Home
Class 12
MATHS
If the vectors vec(A) B = 3 hat(i)+4 hat...

If the vectors `vec(A) B = 3 hat(i)+4 hat (k) and vec(AC) = 5 hat(i)-2 hat(j)+4hat(k)` are the sides of a triangle ABC, then the length of the median through A is

A

`sqrt(18)`

B

`sqrt(72)`

C

`sqrt(33)`

D

`sqrt(45)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the median through point A in triangle ABC, we will follow these steps: ### Step 1: Understand the Given Vectors We are given two vectors: - \( \vec{AB} = 3\hat{i} + 4\hat{k} \) - \( \vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k} \) These vectors represent the sides of triangle ABC. ### Step 2: Find the Midpoint of Side BC The median from vertex A to side BC is represented by the vector \( \vec{AD} \), where D is the midpoint of side BC. To find \( \vec{AD} \), we first need to find the coordinates of point D. The midpoint D can be found using the formula: \[ \vec{D} = \frac{\vec{B} + \vec{C}}{2} \] However, we can directly find \( \vec{AD} \) using the vectors \( \vec{AB} \) and \( \vec{AC} \). ### Step 3: Calculate the Median Vector \( \vec{AD} \) The median vector \( \vec{AD} \) is given by: \[ \vec{AD} = \frac{\vec{AB} + \vec{AC}}{2} \] Substituting the values of \( \vec{AB} \) and \( \vec{AC} \): \[ \vec{AD} = \frac{(3\hat{i} + 4\hat{k}) + (5\hat{i} - 2\hat{j} + 4\hat{k})}{2} \] ### Step 4: Simplify the Expression Now, we simplify the expression: \[ \vec{AD} = \frac{(3 + 5)\hat{i} + (-2)\hat{j} + (4 + 4)\hat{k}}{2} \] \[ \vec{AD} = \frac{8\hat{i} - 2\hat{j} + 8\hat{k}}{2} \] \[ \vec{AD} = 4\hat{i} - \hat{j} + 4\hat{k} \] ### Step 5: Calculate the Length of the Median To find the length of the median \( AD \), we calculate the magnitude of \( \vec{AD} \): \[ |\vec{AD}| = \sqrt{(4)^2 + (-1)^2 + (4)^2} \] \[ |\vec{AD}| = \sqrt{16 + 1 + 16} \] \[ |\vec{AD}| = \sqrt{33} \] ### Final Answer Thus, the length of the median through A is: \[ \sqrt{33} \]

To find the length of the median through point A in triangle ABC, we will follow these steps: ### Step 1: Understand the Given Vectors We are given two vectors: - \( \vec{AB} = 3\hat{i} + 4\hat{k} \) - \( \vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k} \) These vectors represent the sides of triangle ABC. ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vector vec(A)=hat(i)+2hat(j)+4hat(k) and vec(B)=5hat(i) represent the two sides of a triangle, then the third side of the triangle can have length equal to

If vector vec(A)=hat(i)+2hat(j)+4hat(k) and vec(B)=5hat(i) represent the two sides of a triangle, then the third side of the triangle can have length equal to

If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of Delta ABC is

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If the vectors vec(A) B = 3 hat(i)+4 hat (k) and vec(AC) = 5 hat(i)-2 ...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |