Home
Class 12
MATHS
Let ABC be a triangle whose circumcentre...

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are `vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) `
respectively, then the position vector of the orthocentre of this triangle is

A

`vec(0)`

B

`-(vec(a)+vec(b)+vec(c))/(2)`

C

`vec(a) + vec(b)+vec( c) `

D

`(vec(a)+vec(b)+vec(c))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of the orthocenter of triangle ABC, we can follow these steps: ### Step 1: Understand the Position Vectors We are given the position vectors of points A, B, C, and the circumcenter P: - Position vector of A: \(\vec{a}\) - Position vector of B: \(\vec{b}\) - Position vector of C: \(\vec{c}\) - Position vector of P (circumcenter): \(\vec{P} = \frac{\vec{a} + \vec{b} + \vec{c}}{4}\) ### Step 2: Find the Position Vector of the Centroid G The position vector of the centroid G of triangle ABC is given by: \[ \vec{G} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \] ### Step 3: Use the Relationship Between Orthocenter O, Centroid G, and Circumcenter P We know that the points O (orthocenter), G (centroid), and P (circumcenter) are collinear, and G divides the segment OP in the ratio 2:1. This means: \[ \vec{G} = \frac{2\vec{O} + 1\vec{P}}{2 + 1} \] This can be rearranged to express \(\vec{O}\): \[ \vec{G} = \frac{2\vec{O} + \vec{P}}{3} \] ### Step 4: Substitute the Value of P Substituting \(\vec{P}\) into the equation: \[ \vec{G} = \frac{2\vec{O} + \frac{\vec{a} + \vec{b} + \vec{c}}{4}}{3} \] ### Step 5: Clear the Denominator Multiply both sides by 3 to eliminate the denominator: \[ 3\vec{G} = 2\vec{O} + \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] ### Step 6: Substitute the Value of G Now substitute \(\vec{G} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}\): \[ 3 \cdot \frac{\vec{a} + \vec{b} + \vec{c}}{3} = 2\vec{O} + \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] This simplifies to: \[ \vec{a} + \vec{b} + \vec{c} = 2\vec{O} + \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] ### Step 7: Rearranging the Equation Rearranging gives: \[ 2\vec{O} = \vec{a} + \vec{b} + \vec{c} - \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] To combine the terms on the right side, find a common denominator: \[ 2\vec{O} = \frac{4(\vec{a} + \vec{b} + \vec{c})}{4} - \frac{\vec{a} + \vec{b} + \vec{c}}{4} = \frac{3(\vec{a} + \vec{b} + \vec{c})}{4} \] ### Step 8: Solve for \(\vec{O}\) Dividing both sides by 2: \[ \vec{O} = \frac{3(\vec{a} + \vec{b} + \vec{c})}{8} \] ### Conclusion Thus, the position vector of the orthocenter O is: \[ \vec{O} = \frac{\vec{a} + \vec{b} + \vec{c}}{2} \]

To find the position vector of the orthocenter of triangle ABC, we can follow these steps: ### Step 1: Understand the Position Vectors We are given the position vectors of points A, B, C, and the circumcenter P: - Position vector of A: \(\vec{a}\) - Position vector of B: \(\vec{b}\) - Position vector of C: \(\vec{c}\) - Position vector of P (circumcenter): \(\vec{P} = \frac{\vec{a} + \vec{b} + \vec{c}}{4}\) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If the position vector of these points are vec(a) -2vec(b)+3 vec(c ), 2 vec(a)+3vec(b)-4 vec( c) ,-7 vec(b) + 10 vec(c ) , then the three points are

The position vectors of P and Q are respectively vec a and vec b . If R is a point on vec(PQ) such that vec(PR) = 5 vec(PQ), then the position vector of R, is

The position vectors of A, B,C and D are vec a , vec b , vec 2a+ vec 3b and vec a - vec 2b respectively show that vec DB=3 vec b -vec a and vec AC =vec a + vec 3b

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If vec a ,\ vec b ,\ vec c are position vectors of the vertices of a triangle, then write the position vector of its centroid.

If the position vectors of the points A(3,4),B(5,-6) and C (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

If the position vectors of the points A(3,4),B(5,-6) and (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

If the vectors vec(a) + vec(b), vec(b) + vec(c) and vec(c) + vec(a) are coplanar, then prove that the vectors vec(a), vec(b) and vec(c) are also coplanar.

vec a , vec b and vec c are the position vectors of points A ,B and C respectively, prove that : vec a× vec b+ vec b× vec c+ vec c× vec a is vector perpendicular to the plane of triangle A B Cdot

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Let ABC be a triangle whose circumcentre is at P. If the position vect...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |