Home
Class 12
MATHS
Given that the vectors vec(a) and vec(b)...

Given that the vectors `vec(a) and vec(b)` are non- collinear, the values of x and y for which the vector equality ` 2 vec(u) -vec(v)= vec(w)` holds true if `vec(u) = x vec(a) + 2y vec(b), vec(v)= - 2 y vec (a) + 3 x vec(b), vec(w) = 4 vec(a)-2 vec(b) ` are

A

`x=(4)/(7), y= (6)/(7)`

B

`x=(10)/(7), y= (4)/(7)`

C

`x=(8)/(7), y= (2)/(7)`

D

`x=2, y= 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) for which the vector equality \( 2 \vec{u} - \vec{v} = \vec{w} \) holds true, given the definitions of the vectors \( \vec{u} \), \( \vec{v} \), and \( \vec{w} \). ### Step 1: Write down the expressions for the vectors We have: - \( \vec{u} = x \vec{a} + 2y \vec{b} \) - \( \vec{v} = -2y \vec{a} + 3x \vec{b} \) - \( \vec{w} = 4 \vec{a} - 2 \vec{b} \) ### Step 2: Substitute the expressions into the vector equation We need to substitute \( \vec{u} \) and \( \vec{v} \) into the equation \( 2 \vec{u} - \vec{v} = \vec{w} \): \[ 2 \vec{u} = 2(x \vec{a} + 2y \vec{b}) = 2x \vec{a} + 4y \vec{b} \] \[ -\vec{v} = -(-2y \vec{a} + 3x \vec{b}) = 2y \vec{a} - 3x \vec{b} \] Now, combine these: \[ 2 \vec{u} - \vec{v} = (2x \vec{a} + 4y \vec{b}) + (2y \vec{a} - 3x \vec{b}) = (2x + 2y) \vec{a} + (4y - 3x) \vec{b} \] ### Step 3: Set the expression equal to \( \vec{w} \) Now we set this equal to \( \vec{w} \): \[ (2x + 2y) \vec{a} + (4y - 3x) \vec{b} = (4 \vec{a} - 2 \vec{b}) \] ### Step 4: Equate coefficients From the equation above, we can equate the coefficients of \( \vec{a} \) and \( \vec{b} \): 1. For \( \vec{a} \): \[ 2x + 2y = 4 \quad \text{(1)} \] 2. For \( \vec{b} \): \[ 4y - 3x = -2 \quad \text{(2)} \] ### Step 5: Solve the system of equations From equation (1): \[ 2x + 2y = 4 \implies x + y = 2 \implies y = 2 - x \quad \text{(3)} \] Now substitute (3) into equation (2): \[ 4(2 - x) - 3x = -2 \] \[ 8 - 4x - 3x = -2 \] \[ 8 - 7x = -2 \] \[ -7x = -10 \implies x = \frac{10}{7} \] Now substitute \( x \) back into equation (3) to find \( y \): \[ y = 2 - \frac{10}{7} = \frac{14}{7} - \frac{10}{7} = \frac{4}{7} \] ### Final Result Thus, the values of \( x \) and \( y \) are: \[ x = \frac{10}{7}, \quad y = \frac{4}{7} \]

To solve the problem, we need to find the values of \( x \) and \( y \) for which the vector equality \( 2 \vec{u} - \vec{v} = \vec{w} \) holds true, given the definitions of the vectors \( \vec{u} \), \( \vec{v} \), and \( \vec{w} \). ### Step 1: Write down the expressions for the vectors We have: - \( \vec{u} = x \vec{a} + 2y \vec{b} \) - \( \vec{v} = -2y \vec{a} + 3x \vec{b} \) - \( \vec{w} = 4 \vec{a} - 2 \vec{b} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

Vectors vec aa n d vec b are non-collinear. Find for what value of x vectors vec c=(x-2) vec a+ vec b and vec d=(2x+1) vec a- vec b are collinear?

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec a and vec b are two non-collinear vectors having the same initial point. What are the vectors represented by vec a+ vec b and vec a- vec b .

If vec a and vec b are two non-collinear vectors having the same initial point. What are the vectors represented by vec a+ vec b and vec a- vec b .

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vec rxx veca is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Given that the vectors vec(a) and vec(b) are non- collinear, the valu...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |