Home
Class 12
MATHS
If vec a ,\ vec b ,\ vec c are three ...

If ` vec a ,\ vec b ,\ vec c` are three non-zero vectors, no two of which are collinear and the vector ` vec a+ vec b` is collinear with ` vec c ,\ vec b+ vec c` is collinear with ` vec a ,\ t h e n\ vec a+ vec b+ vec c=` ` vec a` b. ` vec b` c. ` vec c` d. none of these

A

`vec(c ) `

B

`vec(0)`

C

`vec(a) + vec(c )`

D

`vec(a )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions and derive the expression for the vector sum \( \vec{a} + \vec{b} + \vec{c} \). ### Step-by-Step Solution: 1. **Understand the Conditions**: We are given two conditions: - \( \vec{a} + \vec{b} \) is collinear with \( \vec{c} \). - \( \vec{b} + \vec{c} \) is collinear with \( \vec{a} \). 2. **Express Collinearity**: From the first condition, we can express it as: \[ \vec{a} + \vec{b} = \lambda \vec{c} \quad \text{(for some scalar } \lambda\text{)} \] From the second condition, we can express it as: \[ \vec{b} + \vec{c} = \mu \vec{a} \quad \text{(for some scalar } \mu\text{)} \] 3. **Substituting Expressions**: We need to find \( \vec{a} + \vec{b} + \vec{c} \). We can substitute the expressions we have: \[ \vec{a} + \vec{b} + \vec{c} = \lambda \vec{c} + \vec{c} = (\lambda + 1) \vec{c} \] and from the second condition: \[ \vec{a} + \vec{b} + \vec{c} = \vec{a} + \mu \vec{a} = (1 + \mu) \vec{a} \] 4. **Equating the Two Expressions**: Since both expressions represent \( \vec{a} + \vec{b} + \vec{c} \), we can set them equal to each other: \[ (\lambda + 1) \vec{c} = (1 + \mu) \vec{a} \] 5. **Comparing Coefficients**: For the above equation to hold true, the coefficients of \( \vec{a} \) and \( \vec{c} \) must be equal: - Coefficient of \( \vec{c} \): \( \lambda + 1 = 0 \) → \( \lambda = -1 \) - Coefficient of \( \vec{a} \): \( 1 + \mu = 0 \) → \( \mu = -1 \) 6. **Substituting Back**: Now substituting \( \lambda \) and \( \mu \) back into the expressions for \( \vec{a} + \vec{b} \): - From \( \vec{a} + \vec{b} = \lambda \vec{c} \): \[ \vec{a} + \vec{b} = -1 \cdot \vec{c} = -\vec{c} \] - From \( \vec{b} + \vec{c} = \mu \vec{a} \): \[ \vec{b} + \vec{c} = -1 \cdot \vec{a} = -\vec{a} \] 7. **Final Expression**: Now substituting back into \( \vec{a} + \vec{b} + \vec{c} \): \[ \vec{a} + \vec{b} + \vec{c} = \vec{a} + (-\vec{c}) + \vec{c} = \vec{0} \] ### Conclusion: Thus, we conclude that: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] ### Answer: The answer is **(d) none of these**, as the sum is the zero vector.

To solve the problem, we need to analyze the given conditions and derive the expression for the vector sum \( \vec{a} + \vec{b} + \vec{c} \). ### Step-by-Step Solution: 1. **Understand the Conditions**: We are given two conditions: - \( \vec{a} + \vec{b} \) is collinear with \( \vec{c} \). - \( \vec{b} + \vec{c} \) is collinear with \( \vec{a} \). ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

If vec a , vec b, vec c are three non- null vectors such that any two of them are non-collinear. If vec a+ vec b is collinear with vec ca n d vec b+ vec c is collinear with vec a , then find vec a+ vec b+ vecc

Let vec a , vec b, vec c be three non-zero vectors such that any two of them are non-collinear. If vec a+2 vec b is collinear with vec ca n d vec b+3 vec c is collinear with vec a then prove that vec a+2 vec b+6 vec c= vec0

If vec a , vec b , vec c are three non-zero vectors (no two of which are collinear), such that the pairs of vectors (vec a + vec b, vec c) and (vec b + vec c , vec a) are collinear, then vec a + vec b + vec c =

Given three vectors vec a , vec b ,a n d vec c two of which are non-collinear. Further if ( vec a+ vec b) is collinear with vec c ,( vec b+ vec c) is collinear with vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot Find the value of vec a. vec b+ vec b. vec c+ vec c. vec a a. 3 b. -3 c. 0 d. cannot be evaluated

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If vec a ,\ vec b ,\ vec c are three non-zero vectors, no two of wh...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |