Home
Class 12
MATHS
If the position vector of these points a...

If the position vector of these points are `vec(a) -2vec(b)+3 vec(c ), 2 vec(a)+3vec(b)-4 vec( c) ,-7 vec(b) + 10 vec(c ) , ` then the three points are

A

collinear

B

non-coplanar

C

non-collinear

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the points represented by the position vectors \(\vec{P} = \vec{a} - 2\vec{b} + 3\vec{c}\), \(\vec{Q} = 2\vec{a} + 3\vec{b} - 4\vec{c}\), and \(\vec{R} = -7\vec{b} + 10\vec{c}\) are collinear, we can follow these steps: ### Step 1: Define the position vectors Let: - \(\vec{P} = \vec{a} - 2\vec{b} + 3\vec{c}\) - \(\vec{Q} = 2\vec{a} + 3\vec{b} - 4\vec{c}\) - \(\vec{R} = -7\vec{b} + 10\vec{c}\) ### Step 2: Find the vector \(\vec{QR}\) The vector \(\vec{QR}\) is given by: \[ \vec{QR} = \vec{R} - \vec{Q} \] Substituting the values: \[ \vec{QR} = (-7\vec{b} + 10\vec{c}) - (2\vec{a} + 3\vec{b} - 4\vec{c}) \] \[ = -7\vec{b} + 10\vec{c} - 2\vec{a} - 3\vec{b} + 4\vec{c} \] \[ = -2\vec{a} - 10\vec{b} + 14\vec{c} \] ### Step 3: Find the vector \(\vec{PQ}\) The vector \(\vec{PQ}\) is given by: \[ \vec{PQ} = \vec{Q} - \vec{P} \] Substituting the values: \[ \vec{PQ} = (2\vec{a} + 3\vec{b} - 4\vec{c}) - (\vec{a} - 2\vec{b} + 3\vec{c}) \] \[ = 2\vec{a} + 3\vec{b} - 4\vec{c} - \vec{a} + 2\vec{b} - 3\vec{c} \] \[ = \vec{a} + 5\vec{b} - 7\vec{c} \] ### Step 4: Check for collinearity To check if points \(P\), \(Q\), and \(R\) are collinear, we need to see if \(\vec{QR}\) is a scalar multiple of \(\vec{PQ}\): \[ \vec{QR} = -2\vec{a} - 10\vec{b} + 14\vec{c} \] \[ \vec{PQ} = \vec{a} + 5\vec{b} - 7\vec{c} \] We can express \(\vec{QR}\) as: \[ \vec{QR} = -2(\vec{PQ}) \] This shows that \(\vec{QR}\) is indeed a scalar multiple of \(\vec{PQ}\). ### Conclusion Since \(\vec{QR} = -2 \vec{PQ}\), the points \(P\), \(Q\), and \(R\) are collinear.

To determine whether the points represented by the position vectors \(\vec{P} = \vec{a} - 2\vec{b} + 3\vec{c}\), \(\vec{Q} = 2\vec{a} + 3\vec{b} - 4\vec{c}\), and \(\vec{R} = -7\vec{b} + 10\vec{c}\) are collinear, we can follow these steps: ### Step 1: Define the position vectors Let: - \(\vec{P} = \vec{a} - 2\vec{b} + 3\vec{c}\) - \(\vec{Q} = 2\vec{a} + 3\vec{b} - 4\vec{c}\) - \(\vec{R} = -7\vec{b} + 10\vec{c}\) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

If the position vectors of the points A(3,4),B(5,-6) and (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec a , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec a- vec d , then show that A B C D is parallelogram.

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If the position vector of these points are vec(a) -2vec(b)+3 vec(c ), ...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |