Home
Class 12
MATHS
The position vectors of the vectices A, ...

The position vectors of the vectices A, B, C of a `triangle ABC " are " hati - hat j - 3 hat k , 2 hati + hat j - 2 hat k and - 5 hati + 2 hat j - 6 hat k `
respectively. The length of the bisector AD of the angle `angle BAC ` where D is on the line segment BC, is

A

`(15)/2`

B

`(11)/(2)`

C

`(1)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the bisector AD of angle BAC in triangle ABC, we will follow these steps: ### Step 1: Define the position vectors Let the position vectors of points A, B, and C be given as: - \( \vec{A} = \hat{i} - \hat{j} - 3\hat{k} \) - \( \vec{B} = 2\hat{i} + \hat{j} - 2\hat{k} \) - \( \vec{C} = -5\hat{i} + 2\hat{j} - 6\hat{k} \) ### Step 2: Calculate the vectors AB and AC The vector \( \vec{AB} \) can be calculated as: \[ \vec{AB} = \vec{B} - \vec{A} = (2\hat{i} + \hat{j} - 2\hat{k}) - (\hat{i} - \hat{j} - 3\hat{k}) = (2 - 1)\hat{i} + (1 + 1)\hat{j} + (-2 + 3)\hat{k} = \hat{i} + 2\hat{j} + \hat{k} \] The vector \( \vec{AC} \) can be calculated as: \[ \vec{AC} = \vec{C} - \vec{A} = (-5\hat{i} + 2\hat{j} - 6\hat{k}) - (\hat{i} - \hat{j} - 3\hat{k}) = (-5 - 1)\hat{i} + (2 + 1)\hat{j} + (-6 + 3)\hat{k} = -6\hat{i} + 3\hat{j} - 3\hat{k} \] ### Step 3: Calculate the lengths of AB and AC The length of \( \vec{AB} \) is: \[ |\vec{AB}| = \sqrt{(1)^2 + (2)^2 + (1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] The length of \( \vec{AC} \) is: \[ |\vec{AC}| = \sqrt{(-6)^2 + (3)^2 + (-3)^2} = \sqrt{36 + 9 + 9} = \sqrt{54} = 3\sqrt{6} \] ### Step 4: Find the ratio in which D divides BC The point D divides BC in the ratio of \( |\vec{AC}| : |\vec{AB}| = 3\sqrt{6} : \sqrt{6} = 3:1 \). ### Step 5: Calculate the position vector of D Using the section formula, the position vector \( \vec{D} \) can be calculated as: \[ \vec{D} = \frac{m\vec{C} + n\vec{B}}{m+n} = \frac{3\vec{C} + 1\vec{B}}{3 + 1} \] Substituting the vectors: \[ \vec{D} = \frac{3(-5\hat{i} + 2\hat{j} - 6\hat{k}) + 1(2\hat{i} + \hat{j} - 2\hat{k})}{4} \] Calculating the numerator: \[ = \frac{-15\hat{i} + 6\hat{j} - 18\hat{k} + 2\hat{i} + \hat{j} - 2\hat{k}}{4} = \frac{(-15 + 2)\hat{i} + (6 + 1)\hat{j} + (-18 - 2)\hat{k}}{4} \] \[ = \frac{-13\hat{i} + 7\hat{j} - 20\hat{k}}{4} = -\frac{13}{4}\hat{i} + \frac{7}{4}\hat{j} - 5\hat{k} \] ### Step 6: Calculate the vector AD Now, we find \( \vec{AD} \): \[ \vec{AD} = \vec{D} - \vec{A} = \left(-\frac{13}{4}\hat{i} + \frac{7}{4}\hat{j} - 5\hat{k}\right) - \left(\hat{i} - \hat{j} - 3\hat{k}\right) \] \[ = \left(-\frac{13}{4} - 1\right)\hat{i} + \left(\frac{7}{4} + 1\right)\hat{j} + \left(-5 + 3\right)\hat{k} \] \[ = \left(-\frac{13}{4} - \frac{4}{4}\right)\hat{i} + \left(\frac{7}{4} + \frac{4}{4}\right)\hat{j} - 2\hat{k} \] \[ = -\frac{17}{4}\hat{i} + \frac{11}{4}\hat{j} - 2\hat{k} \] ### Step 7: Calculate the length of AD Finally, we calculate the length of \( \vec{AD} \): \[ |\vec{AD}| = \sqrt{\left(-\frac{17}{4}\right)^2 + \left(\frac{11}{4}\right)^2 + (-2)^2} \] \[ = \sqrt{\frac{289}{16} + \frac{121}{16} + 4} = \sqrt{\frac{289 + 121 + 64}{16}} = \sqrt{\frac{474}{16}} = \frac{\sqrt{474}}{4} = \frac{3\sqrt{6}}{4} \] Thus, the length of the bisector AD is \( \frac{3\sqrt{6}}{4} \).

To find the length of the bisector AD of angle BAC in triangle ABC, we will follow these steps: ### Step 1: Define the position vectors Let the position vectors of points A, B, and C be given as: - \( \vec{A} = \hat{i} - \hat{j} - 3\hat{k} \) - \( \vec{B} = 2\hat{i} + \hat{j} - 2\hat{k} \) - \( \vec{C} = -5\hat{i} + 2\hat{j} - 6\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

Consider points A, B, C and D with position vectors 7 hati - 4 hat j + 7 hat k , hati - 6 hat j + 10 hat k , - hati - 3 hatj + 4 hatk and 5 hati - hatj + 5 hatk respectively. Then, ABCD is a

The position vectors of the point A ,B ,C and D are 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat k and 4 hat i+5 hat j+lambda hat k , respectively. If the points A ,B ,C and D lie on a plane, find the value of lambda .

Dot product of a vector with hat i+ hat j-3 hat k ,\ hat i+3 hat j-2 hat k\ a n d\ 2 hat i+ hat j+4 hat k are 0, 5 and 8 respectively. Find the vector.

Obtain the magnitude of 2A - 3B if A = hati +hatj- 2 hat k and B = 2 hat i - hat j+hat k .

Let ABC be a triangle, the position vectors of whose vertices are respectively 7 hatj + 10 hatk , -hati + 6 hat j + 6 hatk and -4 hati + 9 hatj + 6 hat k . " Then, " Delta ABC is

Show that the points A, B, C with position vectors 2 hat i- hat j+ hat k ,\ hat i-3 hat j-5 hat k and 3 hat i-4 hat j-4 hat k respectively, are the vertices of a right angled triangle. Also, find the remaining angles of the triangle.

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

Obtain the magnitude of 2A - 3B if A = hati +hatJ- 2 hat k and b = 2 hat I - hat j+hat k .

Prove that the following vectors are coplanar: hat i+ hat j+ hat k ,\ 2 hat i+3 hat j- hat k\ a n d- hat i-2 hat j+2 hat k

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. The position vectors of the vectices A, B, C of a triangle ABC " are "...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |