Home
Class 12
MATHS
Consider points A, B, C and D with posi...

Consider points A, B, C and D with position vectors `7 hati - 4 hat j + 7 hat k , hati - 6 hat j + 10 hat k , - hati - 3 hatj + 4 hatk and 5 hati - hatj + 5 hatk ` respectively. Then, ABCD is a

A

parallelogram but not a rhombus

B

square

C

rhombus

D

rectangle

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the quadrilateral formed by the points A, B, C, and D with given position vectors, we will follow these steps: ### Step 1: Identify the Position Vectors The position vectors for points A, B, C, and D are given as: - A: \( \vec{A} = 7\hat{i} - 4\hat{j} + 7\hat{k} \) - B: \( \vec{B} = \hat{i} - 6\hat{j} + 10\hat{k} \) - C: \( \vec{C} = -\hat{i} - 3\hat{j} + 4\hat{k} \) - D: \( \vec{D} = 5\hat{i} - \hat{j} + 5\hat{k} \) ### Step 2: Write the Coordinates We can extract the coordinates from the position vectors: - A: \( (7, -4, 7) \) - B: \( (1, -6, 10) \) - C: \( (-1, -3, 4) \) - D: \( (5, -1, 5) \) ### Step 3: Calculate Distances Between Points We will calculate the distances between each pair of consecutive points using the distance formula in 3D: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] #### Distance AB \[ AB = \sqrt{(1 - 7)^2 + (-6 + 4)^2 + (10 - 7)^2} \] \[ = \sqrt{(-6)^2 + (-2)^2 + (3)^2} \] \[ = \sqrt{36 + 4 + 9} = \sqrt{49} = 7 \] #### Distance BC \[ BC = \sqrt{(-1 - 1)^2 + (-3 + 6)^2 + (4 - 10)^2} \] \[ = \sqrt{(-2)^2 + (3)^2 + (-6)^2} \] \[ = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] #### Distance CD \[ CD = \sqrt{(5 + 1)^2 + (-1 + 3)^2 + (5 - 4)^2} \] \[ = \sqrt{(6)^2 + (2)^2 + (1)^2} \] \[ = \sqrt{36 + 4 + 1} = \sqrt{41} \] #### Distance DA \[ DA = \sqrt{(7 - 5)^2 + (-4 + 1)^2 + (7 - 5)^2} \] \[ = \sqrt{(2)^2 + (-3)^2 + (2)^2} \] \[ = \sqrt{4 + 9 + 4} = \sqrt{17} \] ### Step 4: Analyze the Distances Now we have the distances: - \( AB = 7 \) - \( BC = 7 \) - \( CD = \sqrt{41} \) - \( DA = \sqrt{17} \) ### Conclusion Since \( AB = BC \) but \( CD \neq DA \), the quadrilateral ABCD does not satisfy the conditions for being a parallelogram, rectangle, rhombus, or square. Thus, it belongs to none of these categories.

To determine the nature of the quadrilateral formed by the points A, B, C, and D with given position vectors, we will follow these steps: ### Step 1: Identify the Position Vectors The position vectors for points A, B, C, and D are given as: - A: \( \vec{A} = 7\hat{i} - 4\hat{j} + 7\hat{k} \) - B: \( \vec{B} = \hat{i} - 6\hat{j} + 10\hat{k} \) - C: \( \vec{C} = -\hat{i} - 3\hat{j} + 4\hat{k} \) - D: \( \vec{D} = 5\hat{i} - \hat{j} + 5\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,hati-6hatj+10hatk,-1hati-3hatj+4hatk and 5hati-hatj+5hatk , respectively. Then, ABCD is

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

Show that the four points A, B, C and D with position vectors 4 hat i+5\ hat j+ hat k ,-(\ hat j+ hat k),3 hat j+9\ hat j+4 hat k\ a n d\ 4( hat i+ hat j+ hat k) , respectively are coplanar.

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

The four points whose position vector are 6 hat i - 7 hat j,16 hat i - 29 hat j - 4 hat k, 3 hat j - 6 hat k, 2 hat i + 5 hat j + 10 hat k are coplanar

If three points A, B and C with position vectors hat(i) + x hat(j) +3 hat(k) , 3 hat(i) + 4 hat(j) + 7hat( k) and y hat(i) - 2 hat(j) - 5 hat(k) respectively are collinear, then (x,y) =

The position vectors of the point A ,B ,C and D are 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat k and 4 hat i+5 hat j+lambda hat k , respectively. If the points A ,B ,C and D lie on a plane, find the value of lambda .

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Consider points A, B, C and D with position vectors 7 hati - 4 hat j ...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |