Home
Class 12
MATHS
If the points P( veca + 2 vec b + vec c...

If the points `P( veca + 2 vec b + vec c ), Q (2 veca + 3 vecb), R (vecb+ t vec c ) ` are collinear, where `veca , vec b , vec c ` are non-coplanar vectors, the value of t is

A

-2

B

`-1//2`

C

`1//2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( t \) such that the points \( P(\vec{a} + 2\vec{b} + \vec{c}), Q(2\vec{a} + 3\vec{b}), R(\vec{b} + t\vec{c}) \) are collinear, we can use the concept that points are collinear if the vector from one point to another is a scalar multiple of the vector from a third point to one of those points. ### Step-by-Step Solution: 1. **Define the Vectors**: - Let \( P = \vec{a} + 2\vec{b} + \vec{c} \) - Let \( Q = 2\vec{a} + 3\vec{b} \) - Let \( R = \vec{b} + t\vec{c} \) 2. **Find the Vectors \( \vec{PQ} \) and \( \vec{QR} \)**: - The vector \( \vec{PQ} = Q - P \): \[ \vec{PQ} = (2\vec{a} + 3\vec{b}) - (\vec{a} + 2\vec{b} + \vec{c}) = (2\vec{a} - \vec{a}) + (3\vec{b} - 2\vec{b}) - \vec{c} = \vec{a} + \vec{b} - \vec{c} \] - The vector \( \vec{QR} = R - Q \): \[ \vec{QR} = (\vec{b} + t\vec{c}) - (2\vec{a} + 3\vec{b}) = (-2\vec{a}) + (t\vec{c} - 2\vec{b}) = -2\vec{a} + (t - 2)\vec{c} \] 3. **Set Up the Collinearity Condition**: - The points \( P, Q, R \) are collinear if \( \vec{PQ} = \lambda \vec{QR} \) for some scalar \( \lambda \). - Thus, we have: \[ \vec{a} + \vec{b} - \vec{c} = \lambda (-2\vec{a} + (t - 2)\vec{c}) \] 4. **Equate Coefficients**: - From the equation above, we can equate the coefficients of \( \vec{a}, \vec{b}, \vec{c} \): - Coefficient of \( \vec{a} \): \( 1 = -2\lambda \) - Coefficient of \( \vec{b} \): \( 1 = 0 \) (This indicates that \( \vec{b} \) does not appear in \( \vec{QR} \), thus it must be zero) - Coefficient of \( \vec{c} \): \( -1 = \lambda(t - 2) \) 5. **Solve for \( \lambda \)**: - From \( 1 = -2\lambda \): \[ \lambda = -\frac{1}{2} \] 6. **Substitute \( \lambda \) into the Coefficient of \( \vec{c} \)**: - Substitute \( \lambda \) into \( -1 = \lambda(t - 2) \): \[ -1 = -\frac{1}{2}(t - 2) \] - Multiply both sides by -2: \[ 2 = t - 2 \] - Thus, solving for \( t \): \[ t = 4 \] ### Final Answer: The value of \( t \) is \( 4 \).

To determine the value of \( t \) such that the points \( P(\vec{a} + 2\vec{b} + \vec{c}), Q(2\vec{a} + 3\vec{b}), R(\vec{b} + t\vec{c}) \) are collinear, we can use the concept that points are collinear if the vector from one point to another is a scalar multiple of the vector from a third point to one of those points. ### Step-by-Step Solution: 1. **Define the Vectors**: - Let \( P = \vec{a} + 2\vec{b} + \vec{c} \) - Let \( Q = 2\vec{a} + 3\vec{b} \) - Let \( R = \vec{b} + t\vec{c} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

i. Prove that the points vec a-2vec b+3vec c, 2vec a+3vec b-4vec c and -7vecb+10 vec c are are collinear, where vec a, vec b, vec c are non-coplanar. ii. Prove that the points A(1,2,3), B(3,4,7), and C(-3,-2,-5) are collinear. find the ratio in which point C divides AB.

Show that the vectors vec a-2 vec b+3 vec c , vec a-3 vec b+5 vec ca n d-2 vec a+3 vec b-4 vec c are coplanar, where vec a , vec b , vec c are non-coplanar.

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

36. If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd , where veca, vecb are non-collinear and vec c, vec d are also non-collinear then :

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If the points P( veca + 2 vec b + vec c ), Q (2 veca + 3 vecb), R (ve...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |