Home
Class 12
MATHS
Let co-ordinates of a point 'p' with res...

Let co-ordinates of a point 'p' with respectto the system non-coplanar vectors `veca, vecb and vecc` is (3, 2, 1). Then, co-ordinates of 'p'with respect to the system of vectors `vec a+vec b+vec c,vec a-vecb+vec c. vec a+vec b- vec c`

A

`(3//2, 1//2 , 1 ) `

B

`(3//2, 1 , 1//2)`

C

`(1//2, 3//2,1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coordinates of the point \( P \) with respect to the new system of vectors \( \vec{a} + \vec{b} + \vec{c} \), \( \vec{a} - \vec{b} + \vec{c} \), and \( \vec{a} + \vec{b} - \vec{c} \) given that the coordinates of \( P \) with respect to the original system of non-coplanar vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are \( (3, 2, 1) \). ### Step-by-Step Solution: 1. **Express the coordinates in terms of the original vectors**: The coordinates of point \( P \) with respect to the original vectors can be expressed as: \[ P = 3\vec{a} + 2\vec{b} + 1\vec{c} \] This is our Equation (1). 2. **Define the new system of vectors**: Let: \[ \vec{u} = \vec{a} + \vec{b} + \vec{c} \] \[ \vec{v} = \vec{a} - \vec{b} + \vec{c} \] \[ \vec{w} = \vec{a} + \vec{b} - \vec{c} \] 3. **Express \( P \) in terms of the new vectors**: We want to express \( P \) as: \[ P = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} \] Expanding this gives: \[ P = \alpha(\vec{a} + \vec{b} + \vec{c}) + \beta(\vec{a} - \vec{b} + \vec{c}) + \gamma(\vec{a} + \vec{b} - \vec{c}) \] Simplifying this, we get: \[ P = (\alpha + \beta + \gamma)\vec{a} + (\alpha - \beta + \gamma)\vec{b} + (\alpha + \beta - \gamma)\vec{c} \] This is our Equation (2). 4. **Set up the equations by comparing coefficients**: From Equations (1) and (2), we can equate the coefficients of \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \): - For \( \vec{a} \): \[ \alpha + \beta + \gamma = 3 \quad \text{(Equation 3)} \] - For \( \vec{b} \): \[ \alpha - \beta + \gamma = 2 \quad \text{(Equation 4)} \] - For \( \vec{c} \): \[ \alpha + \beta - \gamma = 1 \quad \text{(Equation 5)} \] 5. **Solve the system of equations**: Now we have a system of three equations: 1. \( \alpha + \beta + \gamma = 3 \) 2. \( \alpha - \beta + \gamma = 2 \) 3. \( \alpha + \beta - \gamma = 1 \) **Subtract Equation 4 from Equation 3**: \[ (\alpha + \beta + \gamma) - (\alpha - \beta + \gamma) = 3 - 2 \] This simplifies to: \[ 2\beta = 1 \implies \beta = \frac{1}{2} \] **Substitute \( \beta \) back into Equations 3 and 5**: From Equation 3: \[ \alpha + \frac{1}{2} + \gamma = 3 \implies \alpha + \gamma = 3 - \frac{1}{2} = \frac{5}{2} \quad \text{(Equation 6)} \] From Equation 5: \[ \alpha + \frac{1}{2} - \gamma = 1 \implies \alpha - \gamma = 1 - \frac{1}{2} = \frac{1}{2} \quad \text{(Equation 7)} \] **Now solve Equations 6 and 7**: Adding Equations 6 and 7: \[ (\alpha + \gamma) + (\alpha - \gamma) = \frac{5}{2} + \frac{1}{2} \] This gives: \[ 2\alpha = 3 \implies \alpha = \frac{3}{2} \] Substitute \( \alpha \) back into Equation 6: \[ \frac{3}{2} + \gamma = \frac{5}{2} \implies \gamma = 1 \] 6. **Final coordinates**: We have found: \[ \alpha = \frac{3}{2}, \quad \beta = \frac{1}{2}, \quad \gamma = 1 \] Therefore, the coordinates of point \( P \) with respect to the new system of vectors are: \[ \left( \frac{3}{2}, \frac{1}{2}, 1 \right) \]

To solve the problem, we need to find the coordinates of the point \( P \) with respect to the new system of vectors \( \vec{a} + \vec{b} + \vec{c} \), \( \vec{a} - \vec{b} + \vec{c} \), and \( \vec{a} + \vec{b} - \vec{c} \) given that the coordinates of \( P \) with respect to the original system of non-coplanar vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are \( (3, 2, 1) \). ### Step-by-Step Solution: 1. **Express the coordinates in terms of the original vectors**: The coordinates of point \( P \) with respect to the original vectors can be expressed as: \[ P = 3\vec{a} + 2\vec{b} + 1\vec{c} ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

i. If vec a , vec b a n d vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

If a ,\ b ,\ c are non coplanar vectors prove that the points having the following position vectors are collinear: vec a+ vec b+ vec c ,\ 4 vec a+3 vec b ,\ 10 vec a+7 vec b-2 vec c

Let vec a , vec b ,a n d vec c be non-coplanar vectors and let the equation vec a^' , vec b^' , vec c ' are reciprocal system of vector vec a , vec b , vec c , then prove that vec axx vec a^'+ vec bxx vec b^'+ vec cxx vec c ' is a null vector.

Let vec a , vec ba n d vec c , be non-zero non-coplanar vectors. Prove that: vec a-2 vec b+3 vec c ,-2 vec a+3 vec b-4 vec ca n d vec c-3 vec b+5 vec c are coplanar vectors. 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Let co-ordinates of a point 'p' with respectto the system non-coplanar...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |