Home
Class 12
MATHS
If ABCDEF is regular hexagon, then AD+EB...

If ABCDEF is regular hexagon, then AD+EB+FC is

A

` 2 A vec B `

B

`vec 0`

C

`3 A vec B `

D

`4 A vec B `

Text Solution

Verified by Experts

The correct Answer is:
D

Let ` A vec B = vec a and B vec C = vec b .` Then ,
`A vec O = B vec C = vec b , Ovec C = F vec O = vec a `

In ` Delta AOB`, we have
`A vec B + B vec O = A vec O `
`rArr vec a + B vec O = vec b " " [ because A vec O = B vec C =vec b]`
` rArr B vec O = vec b - vec a `
`rArr B vec E = 2 B vec O = 2 (vec b - vec a )`
`therefore A vec D + E vec B + F vec C = A vec D - B vec E + 2 O vec C `
`rArr A vec D + E vec B + F vec C = 2 vec b -2 (vec b - vec a ) + 2 vec a =4 vec a = 4 A vec B `
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + vec(FA)=

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

If ABCDEF is a regular hexagon, prove that AD+EB+FC=4AB .

In the figure shown, ABCDEF is a regular hexagon and AOF is an equilateral triangle. The perimeter of DeltaAOF is 2a feet. What is the perimeter of the hexagon in feet?

ABCDEF is a regular hexagon with centre a the origin such that vec(AB)+vec(EB)+vec(FC)= lamda vec(ED) then lamda = (A) 2 (B) 4 (C) 6 (D) 3

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

ABCDEF is a regular hexagon where centre O is the origin, if the position vector of A is hati-hatj+2hatk, then bar(BC) is equal to

ABCDEF is a regular hexagon , with the sides AB, AC, AD, AE and AF representing vectors 1 unit , 2 units , 3 units , 4 units and 5 units respetively . Find their resultant ?

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |