Home
Class 12
MATHS
ABCDEF si a regular hexagon with centre...

ABCDEF si a regular hexagon with centre at the origin such that `A vec D + E vec B + F vec C = lambda E vec D . " Then, " lambda ` equals

A

2

B

4

C

6

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors associated with the regular hexagon ABCDEF centered at the origin. We are given the equation: \[ \vec{AD} + \vec{EB} + \vec{FC} = \lambda \vec{ED} \] ### Step-by-Step Solution: 1. **Understanding the Hexagon**: - A regular hexagon has six vertices (A, B, C, D, E, F) and is symmetric about its center (O). The coordinates of the vertices can be represented in terms of angles. For a hexagon centered at the origin, we can assign coordinates as follows: - \( A(1, 0) \) - \( B\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) - \( C\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) - \( D(-1, 0) \) - \( E\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \) - \( F\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \) 2. **Finding the Vectors**: - We need to express the vectors \( \vec{AD} \), \( \vec{EB} \), and \( \vec{FC} \): - \( \vec{AD} = \vec{D} - \vec{A} = (-1, 0) - (1, 0) = (-2, 0) \) - \( \vec{EB} = \vec{B} - \vec{E} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) - \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = (1, \sqrt{3}) \) - \( \vec{FC} = \vec{C} - \vec{F} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = (-1, \sqrt{3}) \) 3. **Summing the Vectors**: - Now, we sum these vectors: \[ \vec{AD} + \vec{EB} + \vec{FC} = (-2, 0) + (1, \sqrt{3}) + (-1, \sqrt{3}) \] - Simplifying this gives: \[ (-2 + 1 - 1, 0 + \sqrt{3} + \sqrt{3}) = (-2, 2\sqrt{3}) \] 4. **Expressing \( \vec{ED} \)**: - Now we need to express \( \vec{ED} \): - \( \vec{ED} = \vec{D} - \vec{E} = (-1, 0) - \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) 5. **Finding \( \lambda \)**: - We need to find \( \lambda \) such that: \[ (-2, 2\sqrt{3}) = \lambda \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \] - This gives us two equations: - For the x-component: \( -2 = -\frac{\lambda}{2} \) → \( \lambda = 4 \) - For the y-component: \( 2\sqrt{3} = \frac{\lambda \sqrt{3}}{2} \) → \( \lambda = 4 \) Thus, we find that \( \lambda = 4 \). ### Final Answer: \[ \lambda = 4 \]

To solve the problem, we need to analyze the vectors associated with the regular hexagon ABCDEF centered at the origin. We are given the equation: \[ \vec{AD} + \vec{EB} + \vec{FC} = \lambda \vec{ED} \] ### Step-by-Step Solution: 1. **Understanding the Hexagon**: - A regular hexagon has six vertices (A, B, C, D, E, F) and is symmetric about its center (O). The coordinates of the vertices can be represented in terms of angles. For a hexagon centered at the origin, we can assign coordinates as follows: ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

ABCDEF is a regular hexagon with centre a the origin such that vec(AB)+vec(EB)+vec(FC)= lamda vec(ED) then lamda = (A) 2 (B) 4 (C) 6 (D) 3

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

If A B C D E F is a regular hexagon, them vec A D+ vec E B+ vec F C equals 2 vec A B b. vec0 c. 3 vec A B d. 4 vec A B

In a regular hexagon ABCDEF, vec(AE)

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

ABCDEF is a regular hexagon, Fig. 2 (c ) .65. What is the value of (vec (AB) + vec (AC) + vec (AD) + vec (AE) + vec (AF) ? .

ABCDE is a pentagon. Prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If D is the mid point of side BC of a triangle ABC such that vec A B+ vec A C=lambda\ vec A D , write the value of lambdadot

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. ABCDEF si a regular hexagon with centre at the origin such that A vec...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |