Home
Class 12
MATHS
Let vec(OA)=hati+3hatj-2hatk and vec(OB)...

Let `vec(OA)=hati+3hatj-2hatk and vec(OB)=3hati+hatj-2hatk.` Then vector `vec(OC)` biecting the angle `AOB and C` being a point on the line `AB` is

A

`4(hati + hatj - hatk)`

B

`2(hati + hatj - hatk)`

C

`hati + hatj - hatk`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{OC}\) that bisects the angle between the vectors \(\vec{OA}\) and \(\vec{OB}\). The vectors are given as: \[ \vec{OA} = \hat{i} + 3\hat{j} - 2\hat{k} \] \[ \vec{OB} = 3\hat{i} + \hat{j} - 2\hat{k} \] ### Step 1: Calculate the magnitudes of \(\vec{OA}\) and \(\vec{OB}\) The magnitude of a vector \(\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{a^2 + b^2 + c^2} \] Calculating the magnitude of \(\vec{OA}\): \[ |\vec{OA}| = \sqrt{1^2 + 3^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] Calculating the magnitude of \(\vec{OB}\): \[ |\vec{OB}| = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] ### Step 2: Find the unit vectors of \(\vec{OA}\) and \(\vec{OB}\) The unit vector \(\hat{u}\) of a vector \(\vec{v}\) is given by: \[ \hat{u} = \frac{\vec{v}}{|\vec{v}|} \] Finding the unit vector of \(\vec{OA}\): \[ \hat{u_A} = \frac{\vec{OA}}{|\vec{OA}|} = \frac{\hat{i} + 3\hat{j} - 2\hat{k}}{\sqrt{14}} = \frac{1}{\sqrt{14}}\hat{i} + \frac{3}{\sqrt{14}}\hat{j} - \frac{2}{\sqrt{14}}\hat{k} \] Finding the unit vector of \(\vec{OB}\): \[ \hat{u_B} = \frac{\vec{OB}}{|\vec{OB}|} = \frac{3\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{14}} = \frac{3}{\sqrt{14}}\hat{i} + \frac{1}{\sqrt{14}}\hat{j} - \frac{2}{\sqrt{14}}\hat{k} \] ### Step 3: Calculate the angle bisector vector \(\vec{OC}\) The angle bisector vector \(\vec{OC}\) can be calculated using the formula: \[ \vec{OC} = \frac{|\vec{OB}| \cdot \vec{OA} + |\vec{OA}| \cdot \vec{OB}}{|\vec{OA}| + |\vec{OB}|} \] Since both magnitudes are equal (\(|\vec{OA}| = |\vec{OB}| = \sqrt{14}\)), we can simplify this to: \[ \vec{OC} = \frac{\vec{OA} + \vec{OB}}{2} \] Calculating \(\vec{OC}\): \[ \vec{OC} = \frac{(\hat{i} + 3\hat{j} - 2\hat{k}) + (3\hat{i} + \hat{j} - 2\hat{k})}{2} \] \[ = \frac{(1 + 3)\hat{i} + (3 + 1)\hat{j} + (-2 - 2)\hat{k}}{2} \] \[ = \frac{4\hat{i} + 4\hat{j} - 4\hat{k}}{2} \] \[ = 2\hat{i} + 2\hat{j} - 2\hat{k} \] ### Final Answer Thus, the vector \(\vec{OC}\) is: \[ \vec{OC} = 2\hat{i} + 2\hat{j} - 2\hat{k} \]

To solve the problem, we need to find the vector \(\vec{OC}\) that bisects the angle between the vectors \(\vec{OA}\) and \(\vec{OB}\). The vectors are given as: \[ \vec{OA} = \hat{i} + 3\hat{j} - 2\hat{k} \] \[ \vec{OB} = 3\hat{i} + \hat{j} - 2\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

The position vectors of points A and B w.r.t. the origin are veca=hati+3hatj-2hatk and vecb=3hati+hatj -2hatk , respectively. Determine vector vec(OP) which bisects angle AOB , where P is a point on AB.

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OB) on vec(OA) .

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OA) and vec(OB)

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

If vecF=3hati-4hatj+5hatk " and " vecS=6hati+2hatj+5hatk , the find the work done.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Let vec(OA)=hati+3hatj-2hatk and vec(OB)=3hati+hatj-2hatk. Then vector...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |