Home
Class 12
MATHS
If vec r = 3 hati + 2 hatj - 5 hatk , ve...

If `vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk` `and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c` then

A

x, y, z are in AP

B

x, y, z are in GP

C

x, y, z are in HP

D

`y, (x)/(2), z ` are in AP

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{r}\) as a linear combination of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We are given: \[ \vec{r} = 3\hat{i} + 2\hat{j} - 5\hat{k} \] \[ \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 3\hat{j} - 2\hat{k} \] \[ \vec{c} = -2\hat{i} + \hat{j} - 3\hat{k} \] We need to find \(x\), \(y\), and \(z\) such that: \[ \vec{r} = x\vec{a} + y\vec{b} + z\vec{c} \] ### Step 1: Write the equation in terms of components Substituting the expressions for \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) into the equation gives: \[ \vec{r} = x(2\hat{i} - \hat{j} + \hat{k}) + y(\hat{i} + 3\hat{j} - 2\hat{k}) + z(-2\hat{i} + \hat{j} - 3\hat{k}) \] ### Step 2: Combine the components Now, we combine the components: \[ \vec{r} = (2x + y - 2z)\hat{i} + (-x + 3y + z)\hat{j} + (x - 2y - 3z)\hat{k} \] ### Step 3: Set up equations by comparing coefficients Now we can compare the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) from both sides: 1. For \(\hat{i}\): \[ 2x + y - 2z = 3 \quad \text{(Equation 1)} \] 2. For \(\hat{j}\): \[ -x + 3y + z = 2 \quad \text{(Equation 2)} \] 3. For \(\hat{k}\): \[ x - 2y - 3z = -5 \quad \text{(Equation 3)} \] ### Step 4: Solve the system of equations Now we have a system of three equations: 1. \(2x + y - 2z = 3\) 2. \(-x + 3y + z = 2\) 3. \(x - 2y - 3z = -5\) We can solve these equations simultaneously. ### Step 5: Solve Equation 1 and Equation 2 From Equation 1, we can express \(y\) in terms of \(x\) and \(z\): \[ y = 3 - 2x + 2z \quad \text{(Equation 4)} \] Substituting Equation 4 into Equation 2: \[ -x + 3(3 - 2x + 2z) + z = 2 \] Expanding this gives: \[ -x + 9 - 6x + 6z + z = 2 \] \[ -7x + 7z + 9 = 2 \] \[ -7x + 7z = -7 \] \[ x - z = 1 \quad \text{(Equation 5)} \] ### Step 6: Substitute Equation 5 into Equation 3 Now substitute \(z = x - 1\) into Equation 3: \[ x - 2(3 - 2x + 2(x - 1)) - 3(x - 1) = -5 \] This simplifies to: \[ x - 2(3 - 2x + 2x - 2) - 3x + 3 = -5 \] \[ x - 2(1) - 3x + 3 = -5 \] \[ -x + 1 = -5 \] \[ -x = -6 \implies x = 6 \] ### Step 7: Find \(y\) and \(z\) Using \(x = 6\) in Equation 5: \[ z = 6 - 1 = 5 \] Substituting \(x = 6\) into Equation 4 to find \(y\): \[ y = 3 - 2(6) + 2(5) = 3 - 12 + 10 = 1 \] ### Final Values Thus, we have: \[ x = 6, \quad y = 1, \quad z = 5 \] ### Conclusion The values of \(x\), \(y\), and \(z\) are \(6\), \(1\), and \(5\) respectively. ---

To solve the problem, we need to express the vector \(\vec{r}\) as a linear combination of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We are given: \[ \vec{r} = 3\hat{i} + 2\hat{j} - 5\hat{k} \] \[ \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, vecc=-2hati+hatj-3hatk such that vecr=lambdaveca+muvecb+gammavecc , then

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .

Find the sum of the vectors vec=hati-2hatj+hatk, vecb=-2hati+4 hatj+5hatk and vecc=hati-6hatj-7hatk

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, ve...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |