Home
Class 12
MATHS
Let vecAB = 3 hati + hatj - hatk and vec...

Let `vecAB = 3 hati + hatj - hatk and vecAC = hati -hatj + 3hatk` and a point P on the line segment BC is equidistant from AB and AC, then `vec (AP)` is

A

`2 hati - hatk `

B

`hati -2 hatk`

C

`2hati +hatk`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{AP} \) given that point \( P \) is equidistant from the lines \( AB \) and \( AC \). We will use the concept of angle bisectors in vectors. ### Step-by-Step Solution: 1. **Define the Vectors**: Given: \[ \vec{AB} = 3\hat{i} + \hat{j} - \hat{k} \] \[ \vec{AC} = \hat{i} - \hat{j} + 3\hat{k} \] 2. **Find the Magnitudes**: Calculate the magnitudes of \( \vec{AB} \) and \( \vec{AC} \): \[ |\vec{AB}| = \sqrt{(3^2 + 1^2 + (-1)^2)} = \sqrt{9 + 1 + 1} = \sqrt{11} \] \[ |\vec{AC}| = \sqrt{(1^2 + (-1)^2 + 3^2)} = \sqrt{1 + 1 + 9} = \sqrt{11} \] 3. **Find the Direction Ratios**: The direction ratios of \( \vec{AB} \) and \( \vec{AC} \) are: \[ \vec{AB} = (3, 1, -1), \quad \vec{AC} = (1, -1, 3) \] 4. **Find the Angle Bisector**: The vector \( \vec{AP} \) (the angle bisector) can be found using the formula: \[ \vec{AP} = \frac{\vec{AB}}{|\vec{AB}|} + \frac{\vec{AC}}{|\vec{AC}|} \] Since \( |\vec{AB}| = |\vec{AC}| = \sqrt{11} \): \[ \vec{AP} = \frac{1}{\sqrt{11}}(3\hat{i} + \hat{j} - \hat{k}) + \frac{1}{\sqrt{11}}(\hat{i} - \hat{j} + 3\hat{k}) \] 5. **Combine the Vectors**: Combine the components: \[ \vec{AP} = \frac{1}{\sqrt{11}} \left( (3 + 1)\hat{i} + (1 - 1)\hat{j} + (-1 + 3)\hat{k} \right) \] Simplifying this gives: \[ \vec{AP} = \frac{1}{\sqrt{11}} \left( 4\hat{i} + 0\hat{j} + 2\hat{k} \right) = \frac{4}{\sqrt{11}}\hat{i} + \frac{2}{\sqrt{11}}\hat{k} \] 6. **Final Result**: The vector \( \vec{AP} \) is: \[ \vec{AP} = \frac{4}{\sqrt{11}}\hat{i} + \frac{2}{\sqrt{11}}\hat{k} \]

To solve the problem, we need to find the vector \( \vec{AP} \) given that point \( P \) is equidistant from the lines \( AB \) and \( AC \). We will use the concept of angle bisectors in vectors. ### Step-by-Step Solution: 1. **Define the Vectors**: Given: \[ \vec{AB} = 3\hat{i} + \hat{j} - \hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let vec(OA)=hati+3hatj-2hatk and vec(OB)=3hati+hatj-2hatk. Then vector vec(OC) biecting the angle AOB and C being a point on the line AB is

If the point of intersection of the line vecr = (hati + 2 hatj + 3 hatk ) + lambda( 2 hati + hatj+ 2hatk ) and the plane vecr (2 hati - 6 hatj + 3 hatk) + 5=0 lies on the plane vec r ( hati + 75 hatj + 60 hatk) -alpha =0, then 19 alpha + 17 is equal to :

If vecr.(2hati+3hatj-2hatk)+3/2=0 is the equation of a plane and hati-2hatj+3hatk is a point then a point equidistasnt from the plane on the opposite side is (A) hati+2hatj+3hatk (B) 3hati+hatj+hatk (C) 3hati+2hatj+3hatk (D) 3(hati+hatj+hatk)

Given: vec p = - hati -3 hatj + 2hatk and vec r = hati + 3 hatj + 5hatk . Find vector parallel to electric field at position r. [ Note that vec p . vec r = 0 ]

If in the shown figure AC=hati+2hatj+4hatk and BD=hati-3hatj+hatk then BC is

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Let vecAB = 3 hati + hatj - hatk and vecAC = hati -hatj + 3hatk and a ...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |