Home
Class 12
MATHS
Statement -1 : If veca and vecb are non-...

Statement -1 : If `veca and vecb` are non- collinear vectors, then points having position vectors `x_(1) vec(a) + y_(1) vec(b) , x_(2)vec(a)+ y_(2) vec(b) and x_(3) veca + y_(3) vecb` are collinear if
`|(x_(1),x_(2),x_(3)),(y_(1),y_(2),y_(3)),(1,1,1)|=0`
Statement -2: Three points with position vectors `veca, vecb , vec c` are collinear iff there exist scalars x, y, z not all zero such that `x vec a + y vec b + z vec c = vec 0, " where " x+y+z=0.`

A

Statement - 1 is True, Statement - 2 is True , Statement - 2 is a correct explanation for Statement - 1.

B

Statement -1 is True, Statement - 2 is True, Statement -2 is not a correct explanation for Statement - 1.

C

Statement - 1 is True, Statement - 2 is False.

D

Statement - 1 is False, Statement - 2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

Statement -2 si true
Using statement -2, points `x_(1) veca + y_(1) vec b , x_(2) veca + y_(2) vec b and x_(3) vec a + y_(3) vecb` will be collinear iff there exist scalars l, m, n such that
`l (x_(1)veca +y_(1)vecb) + m(x_(2) veca + y_(2)vec b)+ n( x_(3) vec a + y_(3) vec b) = vec 0,` where `l + m+ n =0`
`rArr (lx_(1)+mx_(2)+nx_(3))vec a + (ly_(1)+my_(2)+ny_(3)) vec b = vec 0`
`rArr lx_(1)+mx_(2)+nx_(3) =0 and ly_(1)+my_(2) + ny_(3) =0`
` " " [ because vec a , vec b " are non-collinear " ]`
Thus, we have,
`lx_(1)+mx_(2)+nx_(3)=0`
`ly_(1)+my_(2) + ny_(3) =0`
`l+m+n=0`
This is a homogeneous system of equations having non-trivial solutions (as l, m, n are not all zero).
`therefore |(x_(1),x_(2),x_(3)),(y_(1),y_(2),y_(3)),(1,1,1)|=0`
So statement -1 is true and statement -2 is a correct explanation for statement -1.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Three points with position vectors vec(a), vec(b), vec(c ) will be collinear if there exist scalars x, y, z such that

Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then (OL)/(OA) + (OM)/(OB) =(ON)/(OC) Statement -2 : Three points with position vectors veca , vec b , vec c are collinear iff there exist scalars x, y, z not all zero such that x vec a + y vec b +z vec c = vec 0, " where " x +y + z=0.

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a and vec b are two non-collinear vectors, show that points l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b and l_3 vec a+m_3 vec b are collinear if |(l_1,l_2,l_3),(m_1,m_2,m_3),( 1, 1, 1)|=0.

If vec aa n d vec b are two non-collinear vectors, show that points l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b and l_3 vec a+m_3 vec b are collinear if |l_1 l_2 l_3 m_1m_2m_3 1 1 1|=0.

Let vec a , vec b , vec c be the position vectors of three distinct points A, B, C. If there exist scalars x, y, z (not all zero) such that x vec a+y vec b+z vec c=0a n dx+y+z=0, then show that A ,Ba n dC lie on a line.

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If a ,\ b ,\ c are non coplanar vectors prove that the points having the following position vectors are collinear: vec a ,\ vec b ,\ 3 vec a-2 vec b

If vec aa n d vec b are non-collinear vectors, find the value of x for which the vectors vecalpha=(2x+1) vec a- vec b""a n d"" vecbeta=(x-2)"" vec a+ vec b are collinear.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Statement -1 : If veca and vecb are non- collinear vectors, then point...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |