Home
Class 12
MATHS
Satement-1: if 1/2lexle1then cos^(-1)x...

Satement-1: if `1/2lexle1`then
`cos^(-1)x+cos^(-1){x/2+sqrt(3-3x^(2))/(2)}` is equal to `(pi)/(5)`
Statement-2: `sin^(-1)(2xsqrt(1-x^(2))=2sin^(-1)x if x in -(1)sqrt(2),(1)sqrt(2))`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

To solve the given problem, we will analyze both statements step by step. ### Statement 1: We need to verify if: \[ \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) = \frac{\pi}{5} \] for \( \frac{1}{2} \leq x \leq 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2))

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to