Home
Class 12
MATHS
Statement-1: tan{cos^(-1)((1)/sqrt(82)...

Statement-1:
`tan{cos^(-1)((1)/sqrt(82))-sin^(-1)((5)/sqrt(26))}=29/3`
Statement-2: `[x cos(cot^(-1))^(2)=51/50rarr x -(1)/5sqrt(2)`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

we have tan `{cos^(-1)(1)sqrt(82)-sin^(-1)(5)/sqrt(26)}`
`=tan (tan^(-1)9-tan^(-1)5)=tan{tan^(-1)(9-5)/(1+9xx5)}`
`=tan(tan^(-1)2/23)=2/23`
so statement 1 is not true
`rarr (x^(2))/sqrt(x^(2)+1)+(1)sqrt(x^(2)+1)^(2)=51/50 rarr x^(2)+1=51/50 rarr x=(1)/(5sqrt(2))`
so statement 2 is true
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Statement 1. tan[cos^-1 (1/sqrt(82))-sin^-1 (5/sqrt(26))] is equal to 29/3 , Statement 2. {x cos(cot^-1 x)+sin(cot^-1x)}^2= 51/50 , when x= 1/(5sqrt(2)) (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true

Evaluate: tan{1/2cos^(-1)(sqrt5/3)}

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .

Satement-1: if 1/2lexle1 then cos^(-1)x+cos^(-1){x/2+sqrt(3-3x^(2))/(2)} is equal to (pi)/(5) Statement-2: sin^(-1)(2xsqrt(1-x^(2))=2sin^(-1)x if x in -(1)sqrt(2),(1)sqrt(2))

The value of tan{cos^(-1)1/(5sqrt(2))-sin^(-1)4/(sqrt(17))} is (sqrt(29))/3 (b) (29)/3 (c) (sqrt(3))/(29) (d) 3/(29)

The value of tan{cos^(-1)1/(5sqrt(2))-sin^(-1)4/(sqrt(17))} is (sqrt(29))/3 (b) (29)/3 (c) (sqrt(3))/(29) (d) 3/(29)

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

The value of tan(1/2 cos^(-1)(2/(sqrt(5)))) is

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is