Home
Class 12
MATHS
Statement -1: If a is twice the tangent ...

Statement -1: If a is twice the tangent of the arithmetic mean of `sin^(-1)x and cos^(-1)` x , b the geometric mean of tanx and cot x then `x^(2)-ax+b=0rarr x=1` statement-2: `tan((sin^(-1)x+cos^(-1)x)/(2))=1`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

To solve the problem step by step, we will analyze both statements provided and derive the necessary values. ### Step 1: Analyzing Statement 1 **Statement 1**: If \( a \) is twice the tangent of the arithmetic mean of \( \sin^{-1} x \) and \( \cos^{-1} x \), and \( b \) is the geometric mean of \( \tan x \) and \( \cot x \), then the equation \( x^2 - ax + b = 0 \) has a solution \( x = 1 \). 1. **Finding \( a \)**: - The arithmetic mean of \( \sin^{-1} x \) and \( \cos^{-1} x \) is given by: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin cot^(-1) tan cos^(-1) x=x

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

tan^(-1) ((1-cos x)/(sin x))

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

sin^-1(cos x)+tan ^-1(cot x)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If x in [-1, 0] , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x