Home
Class 12
MATHS
If a^(2) + b^(2) = c^(2), c != 0, then f...

If `a^(2) + b^(2) = c^(2), c != 0`, then find the non-zero solution of the equation:
`sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

Clearly statement 2 is not true
we have
`c^(2)=a^(2)+b^(2)` so let `a=c cos alpha and b =c sin alpha` then
`sin^(-1)(ax)/(c )+sin^(-1)(bx)/(c )=sin^(-1)x`
`rarr sin^(-1)(x cos alpha) s+sin^(-1) (x sin alpha)=sin^(-1)x`
`rarr sin^(-1)(xcos alphasqrt(1=-x^(2))sin^(2)alpha)+x sin alpha sqrt(1-x^(2) cos^(2) alpha)`
`rarr cos alpha sqrt(1-x^(2)) alpha+sin alpha sqrt(1-x^(2) cos^(2) alpha=1)`
clearly `x=pm1` satisfies this equaiton
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

sin^(n)(ax^(2)+bx+c)

The number of solutions of the equation cot(sin x+3)=1, in [0,3pi] is 0 (b) 1 (c) 4 (d) 2

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The number of real solutions of the equation -x^2+x-1=sin^4x is (A) 1 (B) 2 (C) 0 (D) 4

Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,b,c,bx+c),(,ax+b,bx+c,c):}|=0

f(x)=sin^-1x +|sin^-1x| +sin^-1|x| no. of solution of equation f(x)=x is (a) 1 (b) 0 (c) 2 (d) 3

Which of the following statements are correct E_(1) ) If a + b + c = 0 then 1 is a root of ax^(2) + bx + c = 0 . E_(2) ) If sin alpha, cos alpha are the roots of the equation ax^(2) + bx + c = 0 then b^(2)-a^(2) =2ac

In a A B C , if sinAa n dsinB are the roots of the equation c^2x^2-c(a+b)x+a b=0, then find sin c