Home
Class 12
MATHS
Statement-1:sin^(-1)tan((tan^(-1))x+tan^...

Statement-1:`sin^(-1)tan((tan^(-1))x+tan^(-1)(1-x))]` `=(pi)/(2)` has no non zero integral solution Statement-2: The greatest and least values of `(sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (7pi)^(3)/(8) and (pi)^(3)/(32)` respectively

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

To solve the problem, we need to analyze both statements provided in the question. ### Statement 1: We need to evaluate the expression: \[ \sin^{-1}(\tan(\tan^{-1}(x) + \tan^{-1}(1-x))) = \frac{\pi}{2} \] This implies: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (a) (-pi)/2,pi/2 (b) (-pi^3)/8,(pi^3)/8 (c) (pi^3)/(32),(7pi^3)/8 (d) none of these

If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(-1) x)^(3) = a pi^(3) is

Solve for real values of x :((sin^(-1)x)^3+(cos^(-1)x)^3)/((tan^(-1)x+cot^(-1)x)^3)=7

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)