Home
Class 12
MATHS
The value of I=int(0)^(pi//2)((sinx+cos...

The value of `I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx` is

A

3

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} \, dx \), we will follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the denominator \( \sqrt{1 + \sin 2x} \). Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the denominator: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x \] Now, we can express \( 1 \) as \( \sin^2 x + \cos^2 x \): \[ 1 + \sin 2x = \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2 \] Thus, \[ \sqrt{1 + \sin 2x} = \sqrt{(\sin x + \cos x)^2} = \sin x + \cos x \] (for \( x \) in the interval \( [0, \frac{\pi}{2}] \), \( \sin x + \cos x \) is non-negative). ### Step 2: Substitute Back into the Integral Now we substitute this back into our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^2}{\sin x + \cos x} \, dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx \] ### Step 3: Integrate Now we can integrate: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] Calculating each integral: - The integral of \( \sin x \) is \( -\cos x \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = 0 + 1 = 1 \] - The integral of \( \cos x \) is \( \sin x \): \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_{0}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] ### Step 4: Combine Results Combining the results from both integrals: \[ I = 1 + 1 = 2 \] ### Final Answer Thus, the value of the integral \( I \) is: \[ \boxed{2} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} \, dx \), we will follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the denominator \( \sqrt{1 + \sin 2x} \). Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the denominator: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of I=int_0^(pi/2) (sinx+cosx)^2/sqrt(1+sin2x)dx is (A) 2 (B) 1 (C) 0 (D) 3

int(sinx+cosx)/(sqrt(1+sin2x))dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

int (sinx+cosx)/sqrt(1+sin2x)dx .

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

int_(0)^(pi//2) x sinx cos x dx=?

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of I=int(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |