Home
Class 12
MATHS
If I(n)=int(0)^(pi//4) tan^(n)theta d th...

If `I_(n)=int_(0)^(pi//4) tan^(n)theta d theta`, then `I_(8)+I_(6)` equals

A

`(1)/(4)`

B

`(1)/(5)`

C

`(1)/(6)`

D

`(1)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( I_8 + I_6 \) where \( I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta \). ### Step-by-Step Solution: 1. **Define the Integrals**: \[ I_8 = \int_0^{\frac{\pi}{4}} \tan^8 \theta \, d\theta \] \[ I_6 = \int_0^{\frac{\pi}{4}} \tan^6 \theta \, d\theta \] 2. **Combine the Integrals**: \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^8 \theta \, d\theta + \int_0^{\frac{\pi}{4}} \tan^6 \theta \, d\theta = \int_0^{\frac{\pi}{4}} \left( \tan^8 \theta + \tan^6 \theta \right) d\theta \] 3. **Factor Out Common Terms**: \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^6 \theta \left( \tan^2 \theta + 1 \right) d\theta \] 4. **Use the Trigonometric Identity**: We know that \( 1 + \tan^2 \theta = \sec^2 \theta \): \[ I_8 + I_6 = \int_0^{\frac{\pi}{4}} \tan^6 \theta \sec^2 \theta \, d\theta \] 5. **Substitution**: Let \( t = \tan \theta \). Then, \( dt = \sec^2 \theta \, d\theta \). The limits change as follows: - When \( \theta = 0 \), \( t = \tan(0) = 0 \) - When \( \theta = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \) Thus, we can rewrite the integral: \[ I_8 + I_6 = \int_0^1 t^6 \, dt \] 6. **Evaluate the Integral**: \[ \int t^6 \, dt = \frac{t^{7}}{7} \bigg|_0^1 = \frac{1^7}{7} - \frac{0^7}{7} = \frac{1}{7} \] 7. **Final Result**: Therefore, we have: \[ I_8 + I_6 = \frac{1}{7} \] ### Conclusion: The value of \( I_8 + I_6 \) is \( \frac{1}{7} \).

To solve the problem, we need to find the sum \( I_8 + I_6 \) where \( I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta \). ### Step-by-Step Solution: 1. **Define the Integrals**: \[ I_8 = \int_0^{\frac{\pi}{4}} \tan^8 \theta \, d\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

6) int_0^(pi/4)sec^4theta d theta

6) int_0^(pi/4)sec^4theta d theta

5. int_0^(pi/4)sec^2theta d theta

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

9. int_0^(pi/2)sec^4theta d theta

int_0^(pi/4)sectheta d theta =

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If I(n)=int(0)^(pi//4) tan^(n)theta d theta, then I(8)+I(6) equals

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |