Home
Class 12
MATHS
The value of the integral I=int(0)^(a) (...

The value of the integral `I=int_(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx` is

A

`(1)/(16a^(3))((pi)/(4)-(1)/(3))`

B

`(1)/(16a^(3))((pi)/(4)+(1)/(3))`

C

`(a^(3))/(16)((pi)/(4)-(1)/(3))`

D

`(a^(3))/(16)((pi)/(4)+(1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{a} \frac{x^4}{(a^2 + x^2)^4} \, dx, \] we will use the substitution \( x = a \tan \theta \). ### Step 1: Substitution Let \( x = a \tan \theta \). Then, the differential \( dx \) becomes: \[ dx = a \sec^2 \theta \, d\theta. \] When \( x = 0 \), \( \theta = 0 \), and when \( x = a \), \( \theta = \frac{\pi}{4} \). ### Step 2: Change of Limits and Rewrite the Integral Substituting \( x = a \tan \theta \) into the integral gives: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{(a \tan \theta)^4}{(a^2 + (a \tan \theta)^2)^4} \cdot a \sec^2 \theta \, d\theta. \] This simplifies to: \[ I = a^5 \int_{0}^{\frac{\pi}{4}} \frac{\tan^4 \theta \sec^2 \theta}{(a^2(1 + \tan^2 \theta))^4} \, d\theta. \] Using \( 1 + \tan^2 \theta = \sec^2 \theta \): \[ I = a^5 \int_{0}^{\frac{\pi}{4}} \frac{\tan^4 \theta \sec^2 \theta}{(a^2 \sec^2 \theta)^4} \, d\theta = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} \tan^4 \theta \sec^{-6} \theta \, d\theta. \] ### Step 3: Simplifying the Integral Now we can rewrite the integral: \[ I = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} \tan^4 \theta \cos^6 \theta \, d\theta. \] ### Step 4: Using Trigonometric Identities Using the identity \( \tan^4 \theta = \sec^4 \theta - 2 \sec^2 \theta + 1 \): \[ I = \frac{1}{a^3} \int_{0}^{\frac{\pi}{4}} (\sec^4 \theta - 2 \sec^2 \theta + 1) \cos^6 \theta \, d\theta. \] ### Step 5: Splitting the Integral This can be split into three separate integrals: \[ I = \frac{1}{a^3} \left( \int_{0}^{\frac{\pi}{4}} \sec^4 \theta \cos^6 \theta \, d\theta - 2 \int_{0}^{\frac{\pi}{4}} \sec^2 \theta \cos^6 \theta \, d\theta + \int_{0}^{\frac{\pi}{4}} \cos^6 \theta \, d\theta \right). \] ### Step 6: Evaluating Each Integral 1. **First Integral**: \( \int_{0}^{\frac{\pi}{4}} \sec^4 \theta \cos^6 \theta \, d\theta \) can be evaluated using known integrals. 2. **Second Integral**: \( \int_{0}^{\frac{\pi}{4}} \sec^2 \theta \cos^6 \theta \, d\theta \) can also be evaluated similarly. 3. **Third Integral**: \( \int_{0}^{\frac{\pi}{4}} \cos^6 \theta \, d\theta \) is a standard integral. ### Step 7: Final Calculation After evaluating these integrals, we can combine the results to find the value of \( I \). ### Final Result The final result for the integral is: \[ I = \frac{\pi}{16 a^3} - \frac{1}{3}. \]

To solve the integral \[ I = \int_{0}^{a} \frac{x^4}{(a^2 + x^2)^4} \, dx, \] we will use the substitution \( x = a \tan \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral I=int(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx i...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |