Home
Class 12
MATHS
int(0)^(2) |x^(2)+2x-3|dx is equal to...

`int_(0)^(2) |x^(2)+2x-3|dx` is equal to

A

4

B

6

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} |x^2 + 2x - 3| \, dx \), we will follow these steps: ### Step 1: Factor the quadratic expression First, we need to factor the expression inside the absolute value: \[ x^2 + 2x - 3 = (x - 1)(x + 3) \] This means the roots of the equation are \( x = 1 \) and \( x = -3 \). ### Step 2: Determine the sign of the expression Next, we analyze the sign of \( x^2 + 2x - 3 \) in the intervals defined by the roots: - For \( x < -3 \), both factors are negative, so the product is positive. - For \( -3 < x < 1 \), \( (x - 1) < 0 \) and \( (x + 3) > 0 \), so the product is negative. - For \( x > 1 \), both factors are positive, so the product is positive. Thus, we can summarize the sign of \( x^2 + 2x - 3 \): - \( x < -3 \): Positive - \( -3 < x < 1 \): Negative - \( x > 1 \): Positive ### Step 3: Rewrite the integral with absolute values Since we are only interested in the interval from \( 0 \) to \( 2 \), we note that: - From \( 0 \) to \( 1 \), \( x^2 + 2x - 3 < 0 \) (negative). - From \( 1 \) to \( 2 \), \( x^2 + 2x - 3 > 0 \) (positive). Thus, we can rewrite the integral: \[ I = \int_{0}^{1} -(x^2 + 2x - 3) \, dx + \int_{1}^{2} (x^2 + 2x - 3) \, dx \] ### Step 4: Evaluate the integrals Now, we evaluate each integral separately. **Integral from 0 to 1:** \[ \int_{0}^{1} -(x^2 + 2x - 3) \, dx = \int_{0}^{1} (-x^2 - 2x + 3) \, dx \] Calculating this: \[ = \left[-\frac{x^3}{3} - x^2 + 3x\right]_{0}^{1} = \left[-\frac{1}{3} - 1 + 3\right] - [0] = -\frac{1}{3} - 1 + 3 = \frac{5}{3} \] **Integral from 1 to 2:** \[ \int_{1}^{2} (x^2 + 2x - 3) \, dx \] Calculating this: \[ = \left[\frac{x^3}{3} + x^2 - 3x\right]_{1}^{2} = \left[\frac{8}{3} + 4 - 6\right] - \left[\frac{1}{3} + 1 - 3\right] \] Calculating the limits: \[ = \left[\frac{8}{3} - 2\right] - \left[\frac{1}{3} - 2\right] = \left[\frac{8}{3} - \frac{6}{3}\right] - \left[\frac{1}{3} - \frac{6}{3}\right] = \frac{2}{3} - \left[-\frac{5}{3}\right] = \frac{2}{3} + \frac{5}{3} = \frac{7}{3} \] ### Step 5: Combine the results Now, we combine the results from both integrals: \[ I = \frac{5}{3} + \frac{7}{3} = \frac{12}{3} = 4 \] ### Final Answer Thus, the value of the integral \( I = \int_{0}^{2} |x^2 + 2x - 3| \, dx \) is \( \boxed{4} \).

To solve the integral \( I = \int_{0}^{2} |x^2 + 2x - 3| \, dx \), we will follow these steps: ### Step 1: Factor the quadratic expression First, we need to factor the expression inside the absolute value: \[ x^2 + 2x - 3 = (x - 1)(x + 3) \] This means the roots of the equation are \( x = 1 \) and \( x = -3 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(pi//8) tan^(2) 2x dx is equal to

int_(0)^(1//2) |sin pi x|dx is equal to

int_(0)^(2) [x^(2)]dx is equal to

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

int_0^3 |x^(3)+x^(2)+3x|dx is equal to

int_(0)^(1.5) [x^(2)]dx is equal to

int_(0)^(3)(x^(2)+1)dx

int_(0)^(1) |sin 2pi x|dx id equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(2) |x^(2)+2x-3|dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |