Home
Class 12
MATHS
int(0)^(1.5) [x^(2)]dx is equal to...

`int_(0)^(1.5) [x^(2)]dx` is equal to

A

2

B

`2-sqrt(2)`

C

`2+sqrt(2)`

D

`sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1.5} \lfloor x^2 \rfloor \, dx \), we will break it down into intervals based on the behavior of the greatest integer function, \( \lfloor x^2 \rfloor \). ### Step 1: Determine the intervals for \( \lfloor x^2 \rfloor \) 1. **From \( x = 0 \) to \( x = 1 \)**: - For \( 0 \leq x < 1 \), \( 0 \leq x^2 < 1 \) implies \( \lfloor x^2 \rfloor = 0 \). 2. **From \( x = 1 \) to \( x = \sqrt{2} \)**: - For \( 1 \leq x < \sqrt{2} \) (approximately \( 1.414 \)), \( 1 \leq x^2 < 2 \) implies \( \lfloor x^2 \rfloor = 1 \). 3. **From \( x = \sqrt{2} \) to \( x = 1.5 \)**: - For \( \sqrt{2} \leq x < 1.5 \), \( 2 \leq x^2 < 2.25 \) implies \( \lfloor x^2 \rfloor = 2 \). ### Step 2: Split the integral based on these intervals Now we can express the integral as the sum of integrals over these intervals: \[ \int_{0}^{1.5} \lfloor x^2 \rfloor \, dx = \int_{0}^{1} 0 \, dx + \int_{1}^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{1.5} 2 \, dx \] ### Step 3: Evaluate each integral 1. **First integral**: \[ \int_{0}^{1} 0 \, dx = 0 \] 2. **Second integral**: \[ \int_{1}^{\sqrt{2}} 1 \, dx = \left[ x \right]_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **Third integral**: \[ \int_{\sqrt{2}}^{1.5} 2 \, dx = 2 \left[ x \right]_{\sqrt{2}}^{1.5} = 2 \left( 1.5 - \sqrt{2} \right) = 3 - 2\sqrt{2} \] ### Step 4: Combine the results Now, we combine the results of the three integrals: \[ \int_{0}^{1.5} \lfloor x^2 \rfloor \, dx = 0 + (\sqrt{2} - 1) + (3 - 2\sqrt{2}) \] Simplifying this gives: \[ = \sqrt{2} - 1 + 3 - 2\sqrt{2} = 2 - \sqrt{2} \] ### Final Result Thus, the value of the integral \( \int_{0}^{1.5} \lfloor x^2 \rfloor \, dx \) is: \[ \boxed{2 - 2\sqrt{2}} \]

To solve the integral \( \int_{0}^{1.5} \lfloor x^2 \rfloor \, dx \), we will break it down into intervals based on the behavior of the greatest integer function, \( \lfloor x^2 \rfloor \). ### Step 1: Determine the intervals for \( \lfloor x^2 \rfloor \) 1. **From \( x = 0 \) to \( x = 1 \)**: - For \( 0 \leq x < 1 \), \( 0 \leq x^2 < 1 \) implies \( \lfloor x^2 \rfloor = 0 \). 2. **From \( x = 1 \) to \( x = \sqrt{2} \)**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) [x^(2)]dx is equal to

The integral int_(1)^(5) x^(2)dx is equal to

100int_(0)^(1.5)x[x^(2)]dx equals to _________.

If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int_(0)^(1)x. f^''(2x) dx is equal to

int_(0)^(2) |x^(2)+2x-3|dx is equal to

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

int_(-1)^(1)(x^2+1)dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(1.5) [x^(2)]dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |