Home
Class 12
MATHS
If {x} denotes the fractional part of x,...

If {x} denotes the fractional part of x, then `overset(2)underset(0)int{x} dx` is equal to

A

1

B

2

C

`(1)/(2)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{0}^{2} \{x\} \, dx\), where \(\{x\}\) denotes the fractional part of \(x\), we can follow these steps: ### Step 1: Understand the Fractional Part The fractional part of \(x\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \(x\). ### Step 2: Break the Integral into Intervals Since we are integrating from \(0\) to \(2\), we can break this integral into two parts: \[ \int_{0}^{2} \{x\} \, dx = \int_{0}^{1} \{x\} \, dx + \int_{1}^{2} \{x\} \, dx \] ### Step 3: Evaluate the Integral from 0 to 1 For \(0 \leq x < 1\), \(\lfloor x \rfloor = 0\). Therefore, the fractional part is: \[ \{x\} = x - 0 = x \] Thus, we have: \[ \int_{0}^{1} \{x\} \, dx = \int_{0}^{1} x \, dx \] Calculating this integral: \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] ### Step 4: Evaluate the Integral from 1 to 2 For \(1 \leq x < 2\), \(\lfloor x \rfloor = 1\). Therefore, the fractional part is: \[ \{x\} = x - 1 \] Thus, we have: \[ \int_{1}^{2} \{x\} \, dx = \int_{1}^{2} (x - 1) \, dx \] Calculating this integral: \[ \int_{1}^{2} (x - 1) \, dx = \int_{1}^{2} x \, dx - \int_{1}^{2} 1 \, dx \] Calculating each part: \[ \int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \] And, \[ \int_{1}^{2} 1 \, dx = [x]_{1}^{2} = 2 - 1 = 1 \] Thus, \[ \int_{1}^{2} (x - 1) \, dx = \frac{3}{2} - 1 = \frac{1}{2} \] ### Step 5: Combine the Results Now, we can combine the results from both intervals: \[ \int_{0}^{2} \{x\} \, dx = \int_{0}^{1} \{x\} \, dx + \int_{1}^{2} \{x\} \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} \{x\} \, dx = 1 \]

To solve the integral \(\int_{0}^{2} \{x\} \, dx\), where \(\{x\}\) denotes the fractional part of \(x\), we can follow these steps: ### Step 1: Understand the Fractional Part The fractional part of \(x\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \(x\). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

If f(x) = min({x}, {-x}) x in R , where {x} denotes the fractional part of x, then int_(-100)^(100)f(x)dx is

If f(x)=f(a+b-x) , then overset(b)underset(a)int xf(x)dx is equal to

If {x} denotes the fractional part of x, then I = int _(0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

The value of int({[x]})dx where {.} and [.] denotes the fractional part of x and greatest integer function equals

The integral underset(1)overset(5)int x^(2)dx is equal to

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If {x} denotes the fractional part of x, then overset(2)underset(0)int...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |