Home
Class 12
MATHS
int(0)^(4) {sqrt(x)} is equal to, where ...

`int_(0)^(4) {sqrt(x)}` is equal to, where {x} denotes the fraction part of x.

A

`(2)/(3)`

B

`(16)/(3)`

C

`(5)/(3)`

D

`(7)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} \{ \sqrt{x} \} \, dx \), where \( \{x\} \) denotes the fractional part of \( x \), we can break down the integral into manageable parts based on the behavior of the function \( \sqrt{x} \) over the interval from 0 to 4. ### Step 1: Understand the fractional part function The fractional part of a number \( x \) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). ### Step 2: Identify the intervals We will break the integral into intervals where \( \sqrt{x} \) takes on different integer values: - From \( 0 \) to \( 1 \): \( \sqrt{x} \) varies from \( 0 \) to \( 1 \). - From \( 1 \) to \( 4 \): \( \sqrt{x} \) varies from \( 1 \) to \( 2 \). ### Step 3: Set up the integral We can express the integral as: \[ \int_{0}^{4} \{ \sqrt{x} \} \, dx = \int_{0}^{1} \{ \sqrt{x} \} \, dx + \int_{1}^{4} \{ \sqrt{x} \} \, dx \] ### Step 4: Evaluate the first integral \( \int_{0}^{1} \{ \sqrt{x} \} \, dx \) In the interval \( [0, 1] \): - \( \sqrt{x} \) is between \( 0 \) and \( 1 \). - Thus, \( \{ \sqrt{x} \} = \sqrt{x} \). So, \[ \int_{0}^{1} \{ \sqrt{x} \} \, dx = \int_{0}^{1} \sqrt{x} \, dx \] Calculating this integral: \[ \int_{0}^{1} \sqrt{x} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_{0}^{1} = \left[ \frac{2}{3} x^{3/2} \right]_{0}^{1} = \frac{2}{3} \] ### Step 5: Evaluate the second integral \( \int_{1}^{4} \{ \sqrt{x} \} \, dx \) In the interval \( [1, 4] \): - \( \sqrt{x} \) ranges from \( 1 \) to \( 2 \). - Thus, \( \{ \sqrt{x} \} = \sqrt{x} - 1 \). So, \[ \int_{1}^{4} \{ \sqrt{x} \} \, dx = \int_{1}^{4} (\sqrt{x} - 1) \, dx \] Calculating this integral: \[ \int_{1}^{4} (\sqrt{x} - 1) \, dx = \int_{1}^{4} \sqrt{x} \, dx - \int_{1}^{4} 1 \, dx \] Calculating \( \int_{1}^{4} \sqrt{x} \, dx \): \[ \int_{1}^{4} \sqrt{x} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_{1}^{4} = \left[ \frac{2}{3} x^{3/2} \right]_{1}^{4} = \frac{2}{3} (8 - 1) = \frac{2}{3} \times 7 = \frac{14}{3} \] Calculating \( \int_{1}^{4} 1 \, dx \): \[ \int_{1}^{4} 1 \, dx = [x]_{1}^{4} = 4 - 1 = 3 \] Thus, \[ \int_{1}^{4} \{ \sqrt{x} \} \, dx = \frac{14}{3} - 3 = \frac{14}{3} - \frac{9}{3} = \frac{5}{3} \] ### Step 6: Combine the results Now, we combine the results from both intervals: \[ \int_{0}^{4} \{ \sqrt{x} \} \, dx = \int_{0}^{1} \{ \sqrt{x} \} \, dx + \int_{1}^{4} \{ \sqrt{x} \} \, dx = \frac{2}{3} + \frac{5}{3} = \frac{7}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{4} \{ \sqrt{x} \} \, dx = \frac{7}{3} \]

To solve the integral \( \int_{0}^{4} \{ \sqrt{x} \} \, dx \), where \( \{x\} \) denotes the fractional part of \( x \), we can break down the integral into manageable parts based on the behavior of the function \( \sqrt{x} \) over the interval from 0 to 4. ### Step 1: Understand the fractional part function The fractional part of a number \( x \) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

int_0^9{sqrt(x)}dx , where {x} denotes the fractional part of x , is 5 (b) 6 (c) 4 (d) 3

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) = alpha e^(beta) . Then, |alpha + beta| is equal to.......

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. int(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part ...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |