Home
Class 12
MATHS
For any real number x, the value of int(...

For any real number x, the value of `int_(0)^(x) [x]dx`, is

A

x[x]

B

x[x]-[x]([x]+1)

C

`x[x]-(1)/(2)[x]([x]+1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{x} \lfloor t \rfloor \, dt \), where \( \lfloor t \rfloor \) is the greatest integer function (also known as the floor function), we will break down the integral into manageable parts based on the value of \( x \). ### Step 1: Understanding the Floor Function The floor function \( \lfloor t \rfloor \) gives the greatest integer less than or equal to \( t \). For any real number \( x \), we can express \( x \) as: \[ x = n + f \] where \( n = \lfloor x \rfloor \) (the integer part) and \( f = x - n \) (the fractional part, where \( 0 \leq f < 1 \)). ### Step 2: Breaking the Integral into Intervals We will split the integral from \( 0 \) to \( x \) into intervals where \( \lfloor t \rfloor \) is constant: \[ \int_{0}^{x} \lfloor t \rfloor \, dt = \int_{0}^{1} \lfloor t \rfloor \, dt + \int_{1}^{2} \lfloor t \rfloor \, dt + \ldots + \int_{n-1}^{n} \lfloor t \rfloor \, dt + \int_{n}^{n+f} \lfloor t \rfloor \, dt \] ### Step 3: Evaluating Each Integral 1. For \( t \) in \( [0, 1) \): \[ \lfloor t \rfloor = 0 \quad \Rightarrow \quad \int_{0}^{1} \lfloor t \rfloor \, dt = 0 \] 2. For \( t \) in \( [1, 2) \): \[ \lfloor t \rfloor = 1 \quad \Rightarrow \quad \int_{1}^{2} \lfloor t \rfloor \, dt = \int_{1}^{2} 1 \, dt = 1 \] 3. For \( t \) in \( [2, 3) \): \[ \lfloor t \rfloor = 2 \quad \Rightarrow \quad \int_{2}^{3} \lfloor t \rfloor \, dt = \int_{2}^{3} 2 \, dt = 2 \] 4. Continuing this pattern, for \( t \) in \( [k, k+1) \) where \( k = 1, 2, \ldots, n-1 \): \[ \int_{k}^{k+1} \lfloor t \rfloor \, dt = k \] 5. For the last part \( [n, n+f) \): \[ \lfloor t \rfloor = n \quad \Rightarrow \quad \int_{n}^{n+f} \lfloor t \rfloor \, dt = \int_{n}^{n+f} n \, dt = n \cdot f \] ### Step 4: Summing the Integrals Now we can sum all these contributions: \[ \int_{0}^{x} \lfloor t \rfloor \, dt = 0 + 1 + 2 + \ldots + (n-1) + n \cdot f \] The sum \( 1 + 2 + \ldots + (n-1) \) can be calculated using the formula for the sum of the first \( m \) integers: \[ \sum_{k=1}^{m} k = \frac{m(m+1)}{2} \] Thus, \[ \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2} \] ### Final Result Putting it all together, we have: \[ \int_{0}^{x} \lfloor t \rfloor \, dt = \frac{(n-1)n}{2} + n \cdot f \] Substituting \( f = x - n \): \[ \int_{0}^{x} \lfloor t \rfloor \, dt = \frac{(n-1)n}{2} + n(x - n) \] This simplifies to: \[ \int_{0}^{x} \lfloor t \rfloor \, dt = \frac{n(n-1)}{2} + nx - n^2 = nx - \frac{n}{2} \] ### Conclusion Thus, the value of the integral \( \int_{0}^{x} \lfloor t \rfloor \, dt \) is: \[ \int_{0}^{x} \lfloor t \rfloor \, dt = \frac{n(n-1)}{2} + n(x - n) \]

To solve the integral \( \int_{0}^{x} \lfloor t \rfloor \, dt \), where \( \lfloor t \rfloor \) is the greatest integer function (also known as the floor function), we will break down the integral into manageable parts based on the value of \( x \). ### Step 1: Understanding the Floor Function The floor function \( \lfloor t \rfloor \) gives the greatest integer less than or equal to \( t \). For any real number \( x \), we can express \( x \) as: \[ x = n + f \] where \( n = \lfloor x \rfloor \) (the integer part) and \( f = x - n \) (the fractional part, where \( 0 \leq f < 1 \)). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(100) e^(x-[x])dx , is

The value of int_(0)^(3) xsqrt(1+x)dx , is

The value of int_(0)^(1) (1)/(2x-3)dx is

Find the value of int_0^1x(1-x)dx

The value of int_(0)^(2pi) cos^(99)x dx , is

For any natural number n, theb value of rArr int_(0)^(n^(2))[ sqrt(x)]dx, is

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of :.int_(0)^([x]) (2^(x))/(2^([x]))dx is

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int_(0)^(2pi) |cos x -sin x|dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. For any real number x, the value of int(0)^(x) [x]dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |