Home
Class 12
MATHS
If {x} denotes the fractional part of x,...

If {x} denotes the fractional part of x, then `int_(0)^(x)({x}-(1)/(2)) dx` is equal to

A

`(1)/(2){x}({x}+1)`

B

`(1)/(2){x}({x}-1)`

C

`{x}({x}-1)`

D

`{x}({x}+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{x} \left( \{x\} - \frac{1}{2} \right) dx \), where \(\{x\}\) denotes the fractional part of \(x\), we will follow these steps: ### Step 1: Understand the fractional part function The fractional part of \(x\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \(x\). ### Step 2: Split the integral based on the integer part Let \(k = \lfloor x \rfloor\). The value of \(x\) can be expressed as \(k + f\), where \(f = \{x\} = x - k\) and \(0 \leq f < 1\). Therefore, we can split the integral into two parts: \[ I = \int_{0}^{k} \left( \{x\} - \frac{1}{2} \right) dx + \int_{k}^{x} \left( \{x\} - \frac{1}{2} \right) dx \] ### Step 3: Evaluate the first integral For \(0 \leq x < k\), \(\{x\} = x\), so: \[ \int_{0}^{k} \left( \{x\} - \frac{1}{2} \right) dx = \int_{0}^{k} \left( x - \frac{1}{2} \right) dx \] Calculating this integral: \[ = \left[ \frac{x^2}{2} - \frac{x}{2} \right]_{0}^{k} = \left( \frac{k^2}{2} - \frac{k}{2} \right) - 0 = \frac{k^2 - k}{2} \] ### Step 4: Evaluate the second integral For \(k \leq x < k + 1\), we have \(\{x\} = x - k\), thus: \[ \int_{k}^{x} \left( \{x\} - \frac{1}{2} \right) dx = \int_{k}^{x} \left( (x - k) - \frac{1}{2} \right) dx \] This simplifies to: \[ = \int_{k}^{x} \left( x - k - \frac{1}{2} \right) dx = \int_{k}^{x} \left( x - k - \frac{1}{2} \right) dx \] Calculating this integral: \[ = \left[ \frac{(x - k)^2}{2} - \frac{(x - k)}{2} \right]_{k}^{x} = \left( \frac{(x - k)^2}{2} - \frac{(x - k)}{2} \right) - 0 \] Evaluating this gives: \[ = \frac{(x - k)^2}{2} - \frac{(x - k)}{2} \] ### Step 5: Combine the results Now, combining both parts: \[ I = \frac{k^2 - k}{2} + \left( \frac{(x - k)^2}{2} - \frac{(x - k)}{2} \right) \] This can be simplified further, but we can also express it in terms of the fractional part: \[ = \frac{1}{2} \left( (x - k)^2 - (x - k) + k^2 - k \right) \] Recognizing that \(x - k = \{x\}\): \[ I = \frac{1}{2} \left( \{x\}^2 - \{x\} + k^2 - k \right) \] ### Final Result Thus, the integral evaluates to: \[ I = \frac{1}{2} \{x\} (\{x\} - 1) \]

To solve the integral \( I = \int_{0}^{x} \left( \{x\} - \frac{1}{2} \right) dx \), where \(\{x\}\) denotes the fractional part of \(x\), we will follow these steps: ### Step 1: Understand the fractional part function The fractional part of \(x\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \(x\). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

If {x} denotes the fractional part of x, then overset(2)underset(0)int{x} dx is equal to

If f(x) = min({x}, {-x}) x in R , where {x} denotes the fractional part of x, then int_(-100)^(100)f(x)dx is

If {x} denotes the fractional part of x, then lim_(xrarr1) (x sin {x})/(x-1) , is

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

If {x} denotes the fractional part of x, then I = int _(0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(-1)^(0) (dx)/( x^(2) + 2x+ 2) is equal to

If [x] denotes the integral part of [x] , find int_0^1[x]dx, .

int_(0)^(2) |x^(2)+2x-3|dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If {x} denotes the fractional part of x, then int(0)^(x)({x}-(1)/(2)) ...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |