Home
Class 12
MATHS
The value of : int(pi//6)^(5pi//6)sqrt(4...

The value of : `int_(pi//6)^(5pi//6)sqrt(4-4sin^(2)t) dt`, is

A

0

B

2

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \sqrt{4 - 4\sin^2 t} \, dt \), we can follow these steps: ### Step 1: Simplify the integrand We start by factoring out the constant from the square root: \[ I = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \sqrt{4(1 - \sin^2 t)} \, dt \] This simplifies to: \[ I = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \sqrt{4} \sqrt{1 - \sin^2 t} \, dt = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} 2 \sqrt{1 - \sin^2 t} \, dt \] ### Step 2: Use the Pythagorean identity Using the identity \( 1 - \sin^2 t = \cos^2 t \), we can rewrite the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} 2 \sqrt{\cos^2 t} \, dt \] Since \( \sqrt{\cos^2 t} = |\cos t| \), we have: \[ I = 2 \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} |\cos t| \, dt \] ### Step 3: Determine the sign of \( \cos t \) Next, we need to analyze the behavior of \( \cos t \) in the interval \( \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \): - At \( t = \frac{\pi}{6} \), \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} > 0 \). - At \( t = \frac{5\pi}{6} \), \( \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} < 0 \). - The function \( \cos t \) becomes zero at \( t = \frac{\pi}{2} \). Thus, we can split the integral at \( t = \frac{\pi}{2} \): \[ I = 2 \left( \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos t \, dt - \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} \cos t \, dt \right) \] ### Step 4: Calculate the integrals Now we compute the two integrals: 1. For \( \int \cos t \, dt \): \[ \int \cos t \, dt = \sin t \] Therefore: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos t \, dt = \sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{6}\right) = 1 - \frac{1}{2} = \frac{1}{2} \] 2. For the second integral: \[ \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} \cos t \, dt = \sin\left(\frac{5\pi}{6}\right) - \sin\left(\frac{\pi}{2}\right) = \frac{1}{2} - 1 = -\frac{1}{2} \] ### Step 5: Combine the results Now substituting back into the expression for \( I \): \[ I = 2 \left( \frac{1}{2} - \left(-\frac{1}{2}\right) \right) = 2 \left( \frac{1}{2} + \frac{1}{2} \right) = 2 \cdot 1 = 2 \] ### Final Result Thus, the value of the integral is: \[ \boxed{2} \]

To solve the integral \( I = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \sqrt{4 - 4\sin^2 t} \, dt \), we can follow these steps: ### Step 1: Simplify the integrand We start by factoring out the constant from the square root: \[ I = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \sqrt{4(1 - \sin^2 t)} \, dt \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(pi//4)^(pi//2)sqrt(1-sin2x)dx

The value of int_(pi//6)^(pi//3) (1)/( sin 2x) dx is

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate int_(pi//6)^(pi//4)cosecxdx

The value of the integral int_(-pi//4)^(pi//4) sin^(-4)x dx , is

Evaluate : int_(pi//6)^(pi//3)(sinx+cosx)/(sqrt(sin2x))\ dxdot

int_(-pi//4) ^(pi//4) x^(3) sin^(4) xdx=

int_(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of int_(0)^(pi^(2) //4) ( sin sqrt(x))/( sqrt(x)) is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of : int(pi//6)^(5pi//6)sqrt(4-4sin^(2)t) dt, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |