Home
Class 12
MATHS
If [.] stands for the greatest integer f...

If [.] stands for the greatest integer function, then `int_(1)^(2) [3x]dx` is equal to

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{2} [3x] \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments where the function \([3x]\) remains constant. ### Step 1: Determine the behavior of the function \([3x]\) over the interval \([1, 2]\) 1. Calculate \(3x\) at the endpoints of the interval: - At \(x = 1\), \(3 \cdot 1 = 3\) - At \(x = 2\), \(3 \cdot 2 = 6\) 2. Identify the points where \([3x]\) changes its value: - The function \([3x]\) will change at \(x = \frac{4}{3}\) and \(x = \frac{5}{3}\) because: - At \(x = \frac{4}{3}\), \(3 \cdot \frac{4}{3} = 4\) - At \(x = \frac{5}{3}\), \(3 \cdot \frac{5}{3} = 5\) ### Step 2: Break the integral into segments The integral can be split into three parts based on the intervals: - From \(1\) to \(\frac{4}{3}\) - From \(\frac{4}{3}\) to \(\frac{5}{3}\) - From \(\frac{5}{3}\) to \(2\) Thus, we can write: \[ \int_{1}^{2} [3x] \, dx = \int_{1}^{\frac{4}{3}} [3x] \, dx + \int_{\frac{4}{3}}^{\frac{5}{3}} [3x] \, dx + \int_{\frac{5}{3}}^{2} [3x] \, dx \] ### Step 3: Evaluate each segment 1. **For \(x \in [1, \frac{4}{3})\)**: - Here, \(3x\) ranges from \(3\) to just below \(4\), so \([3x] = 3\). - Thus, \[ \int_{1}^{\frac{4}{3}} [3x] \, dx = \int_{1}^{\frac{4}{3}} 3 \, dx = 3 \left( \frac{4}{3} - 1 \right) = 3 \cdot \frac{1}{3} = 1 \] 2. **For \(x \in [\frac{4}{3}, \frac{5}{3})\)**: - Here, \(3x\) ranges from \(4\) to just below \(5\), so \([3x] = 4\). - Thus, \[ \int_{\frac{4}{3}}^{\frac{5}{3}} [3x] \, dx = \int_{\frac{4}{3}}^{\frac{5}{3}} 4 \, dx = 4 \left( \frac{5}{3} - \frac{4}{3} \right) = 4 \cdot \frac{1}{3} = \frac{4}{3} \] 3. **For \(x \in [\frac{5}{3}, 2]\)**: - Here, \(3x\) ranges from \(5\) to \(6\), so \([3x] = 5\). - Thus, \[ \int_{\frac{5}{3}}^{2} [3x] \, dx = \int_{\frac{5}{3}}^{2} 5 \, dx = 5 \left( 2 - \frac{5}{3} \right) = 5 \cdot \frac{1}{3} = \frac{5}{3} \] ### Step 4: Combine the results Now, we can add up the results from each segment: \[ \int_{1}^{2} [3x] \, dx = 1 + \frac{4}{3} + \frac{5}{3} \] Convert \(1\) to a fraction: \[ 1 = \frac{3}{3} \] Thus, \[ \int_{1}^{2} [3x] \, dx = \frac{3}{3} + \frac{4}{3} + \frac{5}{3} = \frac{12}{3} = 4 \] ### Final Answer \[ \int_{1}^{2} [3x] \, dx = 4 \]

To solve the integral \( \int_{1}^{2} [3x] \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments where the function \([3x]\) remains constant. ### Step 1: Determine the behavior of the function \([3x]\) over the interval \([1, 2]\) 1. Calculate \(3x\) at the endpoints of the interval: - At \(x = 1\), \(3 \cdot 1 = 3\) - At \(x = 2\), \(3 \cdot 2 = 6\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

Let f : R->R be given by f(x) = {|x-[x]| , when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to (a) (5)/(2) (b) (3)/(2) (c) 5 (d) 3

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to

If f(x) is a greatest integer function, then f(-2. 5) is equal to

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If [dot] denotes the greatest integer function, then find the value of int_1^2[3x]dx

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

If [x] stands for the greatest integer function, the value of overset(10)underset(4)int([x^(2)])/([x^(2)-28x+196]+[x^(2)])dx , is

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If [.] stands for the greatest integer function, then int(1)^(2) [3x]...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |