Home
Class 12
MATHS
The value of the integral int(0)^(0.9) [...

The value of the integral `int_(0)^(0.9) [x-2[x]] dx`, where [.] denotes the greatest integer function, is

A

0.9

B

0

C

1.8

D

-0.9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{0.9} \left[ x - 2 \left[ x \right] \right] dx \), where \(\left[ x \right]\) denotes the greatest integer function (also known as the floor function), we can follow these steps: ### Step 1: Understand the greatest integer function The greatest integer function \(\left[ x \right]\) gives the largest integer less than or equal to \(x\). For \(x\) in the range \([0, 0.9]\), we have: \[ \left[ x \right] = 0 \] because \(0 \leq x < 1\). ### Step 2: Substitute the greatest integer function into the integral Since \(\left[ x \right] = 0\) for all \(x\) in \([0, 0.9]\), we can substitute this into the integral: \[ I = \int_{0}^{0.9} \left[ x - 2 \cdot 0 \right] dx = \int_{0}^{0.9} x \, dx \] ### Step 3: Evaluate the integral Now we need to evaluate the integral: \[ I = \int_{0}^{0.9} x \, dx \] The integral of \(x\) is: \[ \int x \, dx = \frac{x^2}{2} \] Now we evaluate this from \(0\) to \(0.9\): \[ I = \left[ \frac{x^2}{2} \right]_{0}^{0.9} = \frac{(0.9)^2}{2} - \frac{(0)^2}{2} = \frac{0.81}{2} = 0.405 \] ### Conclusion Thus, the value of the integral is: \[ I = 0.405 \]

To solve the integral \( I = \int_{0}^{0.9} \left[ x - 2 \left[ x \right] \right] dx \), where \(\left[ x \right]\) denotes the greatest integer function (also known as the floor function), we can follow these steps: ### Step 1: Understand the greatest integer function The greatest integer function \(\left[ x \right]\) gives the largest integer less than or equal to \(x\). For \(x\) in the range \([0, 0.9]\), we have: \[ \left[ x \right] = 0 \] because \(0 \leq x < 1\). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of the integral int_(0)^(3) (x^(2)+1)d[x] is, where[*] is the greatest integer function

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(0.9) [x-2[x]] dx, where [.] denotes ...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |