Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^(2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx` is equals to (a)`pi-4` (b)`(2pi)/3-4-sqrt(3)` (c)`(2pi)/3-4-sqrt(3)` (d)`4sqrt(3)-4-(pi)/3`

A

`4sqrt(3)-4`

B

`4sqrt(3)-4-(pi)/(3)`

C

`pi-4`

D

`(2pi)/(3)-4-4sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=overset(pi)underset(0)int sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx`. Then,
`I=overset(pi)underset(0)int sqrt((1-2"sin"(x)/(2))^(2))dx`
`rArr I=overset(pi)underset(0)int|1-2 "sin"(x)/(2)|dx" "[:'sqrt(x^(2))=|x|]`
`rArr I=overset(pi//3)underset(0)int |1-2 "sin"(x)/(2)|dx+overset(pi)underset(pi//3)int |1-2"sin"(x)/(2)|dx`
`rArr I=overset(pi//3)underset(0)int (1-2"sin"(x)/(2))dx+overset(pi)underset(pi//3)int (2"sin"(x)/(2)-1)dx`
`rArr I=[x+4"cos"(x)/(2)]_(0)^(pi//3)+[-4"cos"(x)/(2)-x]_(pi//3)^(pi)`
`rArr I=((pi)/(3)+4"cos"(pi)/(6)-4)+(0-pi+4"cos"(pi)/(6)+(pi)/(3))`
`rArr I=-(pi)/(3)+4sqrt(3)-4`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(pi//4)^(pi//2)sqrt(1-sin2x)dx

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: (2) (3) (4)

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

int_(-pi//4) ^(pi//4) x^(3) sin^(4) xdx=

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The integral int(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |