Home
Class 12
MATHS
If m,n in N, then int(0)^(pi//2)((sin^...

If m,`n in N`, then
`int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx` is equal to

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(pi)/(2n)`

D

`(pi)/(4n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin^m x)^{\frac{1}{n}}}{(\sin^m x)^{\frac{1}{n}} + (\cos^m x)^{\frac{1}{n}}} \, dx, \] we can use the property of definite integrals which states that \[ \int_{0}^{b} f(x) \, dx = \int_{0}^{b} f(b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s denote the integral as \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin^m x)^{\frac{1}{n}}}{(\sin^m x)^{\frac{1}{n}} + (\cos^m x)^{\frac{1}{n}}} \, dx. \] Now, we will apply the property: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin^m(\frac{\pi}{2} - x))^{\frac{1}{n}}}{(\sin^m(\frac{\pi}{2} - x))^{\frac{1}{n}} + (\cos^m(\frac{\pi}{2} - x))^{\frac{1}{n}}} \, dx. \] ### Step 2: Simplify using trigonometric identities Using the identities: \[ \sin\left(\frac{\pi}{2} - x\right) = \cos x \quad \text{and} \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x, \] we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\cos^m x)^{\frac{1}{n}}}{(\cos^m x)^{\frac{1}{n}} + (\sin^m x)^{\frac{1}{n}}} \, dx. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin^m x)^{\frac{1}{n}}}{(\sin^m x)^{\frac{1}{n}} + (\cos^m x)^{\frac{1}{n}}} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{(\cos^m x)^{\frac{1}{n}}}{(\cos^m x)^{\frac{1}{n}} + (\sin^m x)^{\frac{1}{n}}} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{(\sin^m x)^{\frac{1}{n}} + (\cos^m x)^{\frac{1}{n}}}{(\sin^m x)^{\frac{1}{n}} + (\cos^m x)^{\frac{1}{n}}} \right) \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 4: Evaluate the integral The integral simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 5: Solve for \( I \) Dividing both sides by 2, we find: \[ I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin^m x)^{\frac{1}{n}}}{(\sin^m x)^{\frac{1}{n}} + (\cos^m x)^{\frac{1}{n}}} \, dx, \] we can use the property of definite integrals which states that ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

If m,n in I^(+) , then lim_(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

If x^2!=n pi-1, n in N . Then, the value of int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx is equal to:

int(nx^(n-1)+m^(x)logm)/(x^(n)+m^(x))dx equals

int ( n sin^(n-1))/(secx (sin x)^(n)) dx equals :

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If m,n in N, then int(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |