Home
Class 12
MATHS
The value of int(0)^(oo) (logx)/(1+x^(2...

The value of `int_(0)^(oo) (logx)/(1+x^(2))dx`, is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx \), we will follow these steps: ### Step 1: Substitute \( x = \frac{1}{y} \) Let’s perform the substitution \( x = \frac{1}{y} \). Then, we have: \[ dx = -\frac{1}{y^2} \, dy \] Now, we need to change the limits of integration. When \( x \to 0 \), \( y \to \infty \) and when \( x \to \infty \), \( y \to 0 \). Thus, the integral becomes: \[ I = \int_{\infty}^{0} \frac{\log\left(\frac{1}{y}\right)}{1 + \left(\frac{1}{y}\right)^2} \left(-\frac{1}{y^2}\right) \, dy \] ### Step 2: Simplify the Integral Now, we simplify the integrand: \[ \log\left(\frac{1}{y}\right) = -\log y \] And, \[ 1 + \left(\frac{1}{y}\right)^2 = 1 + \frac{1}{y^2} = \frac{y^2 + 1}{y^2} \] Thus, the integral becomes: \[ I = \int_{\infty}^{0} \frac{-\log y}{\frac{y^2 + 1}{y^2}} \left(-\frac{1}{y^2}\right) \, dy = \int_{\infty}^{0} \frac{\log y}{1 + \frac{1}{y^2}} \, dy \] Reversing the limits gives: \[ I = \int_{0}^{\infty} \frac{\log y}{1 + y^2} \, dy \] ### Step 3: Combine the Two Integrals Now we have: \[ I = \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx \] and \[ I = \int_{0}^{\infty} \frac{\log y}{1 + y^2} \, dy \] Thus, we can write: \[ 2I = \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx + \int_{0}^{\infty} \frac{\log y}{1 + y^2} \, dy = \int_{0}^{\infty} \frac{\log x + \log y}{1 + x^2} \, dx \] Since \( \log x + \log y = \log(xy) \), we can express the integral as: \[ 2I = \int_{0}^{\infty} \frac{\log(x^2)}{1 + x^2} \, dx \] This simplifies to: \[ 2I = 2 \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx \] Thus, we have: \[ I = 0 \] ### Final Result The value of the integral is: \[ \boxed{0} \]

To solve the integral \( I = \int_{0}^{\infty} \frac{\log x}{1 + x^2} \, dx \), we will follow these steps: ### Step 1: Substitute \( x = \frac{1}{y} \) Let’s perform the substitution \( x = \frac{1}{y} \). Then, we have: \[ dx = -\frac{1}{y^2} \, dy \] Now, we need to change the limits of integration. When \( x \to 0 \), \( y \to \infty \) and when \( x \to \infty \), \( y \to 0 \). Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

The value of int_0^oo (dx)/(1+x^4) is

L e tA=int_0^oo(logx)/(1+x^3)dx Then find the value of int_0^oo(xlogx)/(1+x^3)dx in terms of A

Evaluate int_(1)^(2)(logx)/(x)dx

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

The value of inte^(5logx)dx is

The value of int_0^oo(x dx)/((1+x)(1+x^2)) is equal to

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(oo) (logx)/(1+x^(2))dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |