Home
Class 12
MATHS
The value of integralint(0)^(1)(log(1+x)...

The value of integral`int_(0)^(1)(log(1+x))/(1+x^(2))dx`, is

A

`(pi)/(8)log_(e )2`

B

`(pi)/(4)log_(e )2`

C

`-(pi)/(8)log_(e )2`

D

`-(pi)/(4) log_(e ) 2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx, \] we will use the substitution \( x = \tan \theta \). ### Step 1: Change of Variables Let \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta. \] Now, we need to change the limits of integration. When \( x = 0 \), \( \theta = 0 \) and when \( x = 1 \), \( \theta = \frac{\pi}{4} \). ### Step 2: Rewrite the Integral Substituting \( x = \tan \theta \) into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\log(1+\tan \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta. \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), the integral simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1+\tan \theta) \, d\theta. \] ### Step 3: Symmetry Property of the Integral Now, we will use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx. \] In our case, we will apply this property with \( a = \frac{\pi}{4} \): \[ I = \int_{0}^{\frac{\pi}{4}} \log(1+\tan(\frac{\pi}{4} - \theta)) \, d\theta. \] Using the identity \( \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta} \), we have: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) \, d\theta. \] ### Step 4: Simplifying the Logarithm Now, simplify the logarithm: \[ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{(1 + \tan \theta) + (1 - \tan \theta)}{1 + \tan \theta} = \frac{2}{1 + \tan \theta}. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1+\tan \theta}\right) \, d\theta. \] ### Step 5: Separate the Integral Now, we can separate the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \log 2 \, d\theta - \int_{0}^{\frac{\pi}{4}} \log(1+\tan \theta) \, d\theta. \] The first integral evaluates to: \[ \log 2 \cdot \frac{\pi}{4}. \] Thus, we have: \[ I = \frac{\pi}{4} \log 2 - I. \] ### Step 6: Solve for \( I \) Now, add \( I \) to both sides: \[ 2I = \frac{\pi}{4} \log 2. \] Dividing by 2 gives: \[ I = \frac{\pi}{8} \log 2. \] ### Conclusion Therefore, the value of the integral is: \[ \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \log 2. \]

To evaluate the integral \[ I = \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx, \] we will use the substitution \( x = \tan \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

The value of integral int_(0)^(1)sqrt((1-x)/(1+x)) dx is

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(0)^(1)x log (1+2 x)dx

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

solve int_(1)^(2)(log x)/(x^(2))dx

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of integralint(0)^(1)(log(1+x))/(1+x^(2))dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |