Home
Class 12
MATHS
The value of the integral int(0)^(a) (1)...

The value of the integral `int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx`, is

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} \frac{1}{x + \sqrt{a^2 - x^2}} \, dx \), we will use a trigonometric substitution. Here are the steps: ### Step 1: Substitution Let \( x = a \sin \theta \). Then, we have: \[ dx = a \cos \theta \, d\theta \] Also, the limits change as follows: - When \( x = 0 \), \( \theta = 0 \) - When \( x = a \), \( \theta = \frac{\pi}{2} \) ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - (a \sin \theta)^2}} \, d\theta \] Now, simplifying the square root: \[ \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2(1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a \cos \theta \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \cos \theta}{a \sin \theta + a \cos \theta} \, d\theta \] Factoring out \( a \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} \, d\theta \] ### Step 3: Use Symmetry Now, we can use the identity: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Let’s consider \( I \) again, but with the substitution \( x = a - x \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta}{\sin \theta + \cos \theta} \, d\theta \] ### Step 4: Add the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} \, d\theta \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta}{\sin \theta + \cos \theta} \, d\theta \) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos \theta + \sin \theta}{\sin \theta + \cos \theta} \right) d\theta = \int_{0}^{\frac{\pi}{2}} d\theta \] This simplifies to: \[ 2I = \frac{\pi}{2} \] ### Step 5: Solve for \( I \) Dividing both sides by 2: \[ I = \frac{\pi}{4} \] Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]

To solve the integral \( I = \int_{0}^{a} \frac{1}{x + \sqrt{a^2 - x^2}} \, dx \), we will use a trigonometric substitution. Here are the steps: ### Step 1: Substitution Let \( x = a \sin \theta \). Then, we have: \[ dx = a \cos \theta \, d\theta \] Also, the limits change as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral I=int_(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx is

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of integral int_(2)^(4)(dx)/(x) is :-

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

The value of the integral int_-2^2(dx)/(x+1)^3 is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |