Home
Class 12
MATHS
The value of int(0)^(pi//2n) (1)/(1+cot ...

The value of `int_(0)^(pi//2n) (1)/(1+cot nx)dx`, is

A

0

B

`(pi)/(4n)`

C

`(pi)/(2n)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cot(nx)} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = nx \). Then, differentiating both sides gives us: \[ dx = \frac{dt}{n} \] Now, we need to change the limits of integration. When \( x = 0 \), \( t = 0 \), and when \( x = \frac{\pi}{2n} \), \( t = \frac{\pi}{2} \). Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot(t)} \cdot \frac{dt}{n} \] ### Step 2: Simplifying the Integral Now, we can rewrite the integral: \[ I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot(t)} \, dt \] Recall that \( \cot(t) = \frac{\cos(t)}{\sin(t)} \), so: \[ 1 + \cot(t) = 1 + \frac{\cos(t)}{\sin(t)} = \frac{\sin(t) + \cos(t)}{\sin(t)} \] Thus, we can rewrite the integral: \[ I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} \, dt \] ### Step 3: Using Symmetry To evaluate this integral, we can use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, let’s apply this property: \[ I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - t\right)}{\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} \, dt \] This simplifies to: \[ I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\cos(t)}{\cos(t) + \sin(t)} \, dt \] ### Step 4: Adding the Two Integrals Now, we have two expressions for \( I \): 1. \( I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} \, dt \) 2. \( I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} \, dt \) Adding these two integrals gives: \[ 2I = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} \frac{\sin(t) + \cos(t)}{\sin(t) + \cos(t)} \, dt = \frac{1}{n} \int_{0}^{\frac{\pi}{2}} 1 \, dt \] This simplifies to: \[ 2I = \frac{1}{n} \cdot \left[ t \right]_{0}^{\frac{\pi}{2}} = \frac{1}{n} \cdot \frac{\pi}{2} \] ### Step 5: Solve for \( I \) Now, solving for \( I \): \[ 2I = \frac{\pi}{2n} \implies I = \frac{\pi}{4n} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4n}} \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{1 + \cot(nx)} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = nx \). Then, differentiating both sides gives us: \[ dx = \frac{dt}{n} \] Now, we need to change the limits of integration. When \( x = 0 \), \( t = 0 \), and when \( x = \frac{\pi}{2n} \), \( t = \frac{\pi}{2} \). Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

int_(0)^(pi//2)(dx)/(1+tanx) is

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(pi//2n) (1)/(1+cot nx)dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |