Home
Class 12
MATHS
The value of the integral int(0)^(pi) (1...

The value of the integral `int_(0)^(pi) (1)/(e^(cosx)+1)dx`, is

A

`pi`

B

0

C

`2pi`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{1}{e^{\cos x} + 1} \, dx \), we can use the property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the integral Let \[ I = \int_{0}^{\pi} \frac{1}{e^{\cos x} + 1} \, dx \] ### Step 2: Apply the property of definite integrals Using the property that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx, \] we can rewrite our integral as: \[ I = \int_{0}^{\pi} \frac{1}{e^{\cos(\pi - x)} + 1} \, dx \] ### Step 3: Simplify the expression We know that \( \cos(\pi - x) = -\cos x \). Therefore, we can substitute this into our integral: \[ I = \int_{0}^{\pi} \frac{1}{e^{-\cos x} + 1} \, dx \] ### Step 4: Rewrite the integral We can rewrite \( e^{-\cos x} \) as \( \frac{1}{e^{\cos x}} \): \[ I = \int_{0}^{\pi} \frac{1}{\frac{1}{e^{\cos x}} + 1} \, dx = \int_{0}^{\pi} \frac{e^{\cos x}}{1 + e^{\cos x}} \, dx \] ### Step 5: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} \frac{1}{e^{\cos x} + 1} \, dx \) 2. \( I = \int_{0}^{\pi} \frac{e^{\cos x}}{1 + e^{\cos x}} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \left( \frac{1}{e^{\cos x} + 1} + \frac{e^{\cos x}}{1 + e^{\cos x}} \right) \, dx \] ### Step 6: Simplify the sum The right-hand side can be simplified: \[ \frac{1}{e^{\cos x} + 1} + \frac{e^{\cos x}}{1 + e^{\cos x}} = \frac{1 + e^{\cos x}}{e^{\cos x} + 1} = 1 \] Thus, \[ 2I = \int_{0}^{\pi} 1 \, dx \] ### Step 7: Calculate the integral The integral of 1 from 0 to \( \pi \) is simply: \[ \int_{0}^{\pi} 1 \, dx = \pi \] So, \[ 2I = \pi \] ### Step 8: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{2}} \]

To solve the integral \( I = \int_{0}^{\pi} \frac{1}{e^{\cos x} + 1} \, dx \), we can use the property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the integral Let \[ I = \int_{0}^{\pi} \frac{1}{e^{\cos x} + 1} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1) , is

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(pi) (1)/(e^(cosx)+1)dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |