Home
Class 12
MATHS
The integral int(0)^(pi) x f(sinx )dx is...

The integral `int_(0)^(pi) x f(sinx )dx` is equal to

A

`(pi)/(2)underset(0)overset(pi)intf(sin x)dx`

B

`(pi)/(4)underset(0)overset(pi)int(sin x)dx`

C

`(pi)/(2)underset(0)overset(pi//2)int (sin x)dx`

D

`(pi)/(2)underset(0)overset(pi//2)intf(cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \), we will use the property of definite integrals which states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, \( a = \pi \). Let's proceed step by step. ### Step 1: Set up the integral Let: \[ I = \int_{0}^{\pi} x f(\sin x) \, dx \] ### Step 2: Apply the property of definite integrals Using the property mentioned, we can rewrite the integral as follows: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] ### Step 3: Simplify the sine function Since \( \sin(\pi - x) = \sin x \), we can substitute this into the integral: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] ### Step 4: Expand the integral Now, we can expand the integral: \[ I = \int_{0}^{\pi} \pi f(\sin x) \, dx - \int_{0}^{\pi} x f(\sin x) \, dx \] ### Step 5: Recognize the original integral Notice that the second term on the right side is just \( I \): \[ I = \pi \int_{0}^{\pi} f(\sin x) \, dx - I \] ### Step 6: Combine like terms Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} f(\sin x) \, dx \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives us: \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] ### Final Result Thus, the value of the integral \( \int_{0}^{\pi} x f(\sin x) \, dx \) is: \[ \boxed{\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx} \] ---

To solve the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \), we will use the property of definite integrals which states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, \( a = \pi \). Let's proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x log sinx dx

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

int_(0)^(pi) x log sinx\ dx

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

If the value of definite integral A=int_(0)^(10pi)[sinx]dx is equal to kpi , then the absolute value of k is equal to (where, [.] is the greatest integer function)

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

The value of integral int_0^pi xf(sinx)dx=

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The integral int(0)^(pi) x f(sinx )dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |