Home
Class 12
MATHS
The value of ({int(-1//2)^(1//2) cos2x.l...

The value of `({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx})`is

A

0

B

4

C

2

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) dx}{\int_{0}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) dx} \] ### Step 1: Analyze the Numerator Let \( N = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) dx \). ### Step 2: Check if the Function is Odd or Even We will check if the function \( f(x) = \cos(2x) \log\left(\frac{1+x}{1-x}\right) \) is odd or even. 1. Calculate \( f(-x) \): \[ f(-x) = \cos(-2x) \log\left(\frac{1-x}{1+x}\right) = \cos(2x) \log\left(\frac{1-x}{1+x}\right) \] Using the property of logarithms: \[ \log\left(\frac{1-x}{1+x}\right) = \log\left(\frac{1+x}{1-x}\right)^{-1} = -\log\left(\frac{1+x}{1-x}\right) \] Therefore, \[ f(-x) = \cos(2x)(-\log\left(\frac{1+x}{1-x}\right)) = -f(x) \] Since \( f(-x) = -f(x) \), the function \( f(x) \) is odd. ### Step 3: Evaluate the Integral Over Symmetric Limits Using the property of integrals of odd functions: \[ \int_{-a}^{a} f(x) \, dx = 0 \] for any odd function \( f(x) \). Thus, \[ N = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) \, dx = 0 \] ### Step 4: Analyze the Denominator Let \( D = \int_{0}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) dx \). Since \( D \) is an integral of a finite value (as \( \cos(2x) \) and \( \log\left(\frac{1+x}{1-x}\right) \) are both well-defined and finite in the interval \( [0, \frac{1}{2}] \)), \( D \) will yield a non-zero finite value. ### Step 5: Evaluate the Expression Now substituting back into the original expression: \[ \frac{N}{D} = \frac{0}{D} = 0 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{0} \]

To solve the given problem, we need to evaluate the expression: \[ \frac{\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) dx}{\int_{0}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) dx} \] ### Step 1: Analyze the Numerator ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

Evaluate the following: int_(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of ({int(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int(0)^(...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |