Home
Class 12
MATHS
The value of int(-pi//4)^(pi//4)(e^(x)se...

The value of `int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx`, is

A

0

B

2

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^x \sec^2 x}{e^{2x} - 1} \, dx, \] we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} (f(x) + f(-x)) \, dx. \] ### Step 1: Define the function Let \[ f(x) = \frac{e^x \sec^2 x}{e^{2x} - 1}. \] ### Step 2: Find \(f(-x)\) Next, we need to compute \(f(-x)\): \[ f(-x) = \frac{e^{-x} \sec^2(-x)}{e^{-2x} - 1}. \] Since \(\sec(-x) = \sec(x)\) and \(\sec^2(-x) = \sec^2(x)\), we can rewrite \(f(-x)\): \[ f(-x) = \frac{e^{-x} \sec^2 x}{e^{-2x} - 1} = \frac{e^{-x} \sec^2 x}{\frac{1}{e^{2x}} - 1} = \frac{e^{-x} \sec^2 x \cdot e^{2x}}{1 - e^{2x}} = \frac{e^{x} \sec^2 x}{1 - e^{2x}}. \] ### Step 3: Combine \(f(x)\) and \(f(-x)\) Now we can add \(f(x)\) and \(f(-x)\): \[ f(x) + f(-x) = \frac{e^x \sec^2 x}{e^{2x} - 1} + \frac{e^x \sec^2 x}{1 - e^{2x}}. \] ### Step 4: Simplify the expression To combine the fractions, we find a common denominator: \[ f(x) + f(-x) = e^x \sec^2 x \left( \frac{1}{e^{2x} - 1} + \frac{1}{1 - e^{2x}} \right). \] Notice that \(1 - e^{2x} = -(e^{2x} - 1)\), so: \[ \frac{1}{1 - e^{2x}} = -\frac{1}{e^{2x} - 1}. \] Thus, \[ f(x) + f(-x) = e^x \sec^2 x \left( \frac{1 - 1}{e^{2x} - 1} \right) = 0. \] ### Step 5: Evaluate the integral Now we can substitute back into our integral: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \, dx = \int_{0}^{\frac{\pi}{4}} (f(x) + f(-x)) \, dx = \int_{0}^{\frac{\pi}{4}} 0 \, dx = 0. \] Thus, the value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^x \sec^2 x}{e^{2x} - 1} \, dx, \] we can use the property of definite integrals that states: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

The valueof int_((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is equal to

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

Evaluate: int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

int_(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(e^(2x)-1) is equal to (i) 0 (ii) 2 (iii) e (iv)none of these

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |