Home
Class 12
MATHS
I=int(0)^(2pi)(1)/(1+e^(sinx))dx is equa...

`I=int_(0)^(2pi)(1)/(1+e^(sinx))dx` is equal to

A

`pi`

B

`2pi`

C

`(pi)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \frac{1}{1 + e^{\sin x}} \, dx \), we can use a property of definite integrals. ### Step-by-Step Solution: 1. **Using the Property of Definite Integrals:** We can use the property that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] Here, \( a = 0 \) and \( b = 2\pi \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{2\pi} \frac{1}{1 + e^{\sin(2\pi - x)}} \, dx \] 2. **Simplifying the Integral:** Since \( \sin(2\pi - x) = -\sin x \), we can substitute this into our integral: \[ I = \int_{0}^{2\pi} \frac{1}{1 + e^{-\sin x}} \, dx \] 3. **Rewriting the Integral:** We can rewrite \( \frac{1}{1 + e^{-\sin x}} \) as: \[ \frac{1}{1 + e^{-\sin x}} = \frac{e^{\sin x}}{e^{\sin x} + 1} \] Thus, we have: \[ I = \int_{0}^{2\pi} \frac{e^{\sin x}}{e^{\sin x} + 1} \, dx \] 4. **Adding the Two Expressions for \( I \):** Now we have two expressions for \( I \): \[ I = \int_{0}^{2\pi} \frac{1}{1 + e^{\sin x}} \, dx \quad \text{(Equation 1)} \] \[ I = \int_{0}^{2\pi} \frac{e^{\sin x}}{e^{\sin x} + 1} \, dx \quad \text{(Equation 2)} \] Adding these two equations: \[ 2I = \int_{0}^{2\pi} \left( \frac{1}{1 + e^{\sin x}} + \frac{e^{\sin x}}{e^{\sin x} + 1} \right) dx \] 5. **Simplifying the Sum:** The sum inside the integral simplifies to: \[ \frac{1 + e^{\sin x}}{1 + e^{\sin x}} = 1 \] Therefore: \[ 2I = \int_{0}^{2\pi} 1 \, dx \] 6. **Calculating the Integral:** The integral of 1 from 0 to \( 2\pi \) is simply: \[ \int_{0}^{2\pi} 1 \, dx = 2\pi \] Thus: \[ 2I = 2\pi \] 7. **Finding \( I \):** Dividing both sides by 2 gives: \[ I = \pi \] ### Final Result: The value of the integral \( I \) is: \[ I = \pi \]

To solve the integral \( I = \int_{0}^{2\pi} \frac{1}{1 + e^{\sin x}} \, dx \), we can use a property of definite integrals. ### Step-by-Step Solution: 1. **Using the Property of Definite Integrals:** We can use the property that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(x)/(1+sinx)dx .

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

int_(0)^( 2 pi)(dx)/(1+e^{sin x})

int_0^(pi/4) (1)/(1-sinx)dx

int_0^(pi/4) (1)/(1+sinx)dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

G i v e nint_0^(pi/2)(dx)/(1+sinx+cosx)=log2. Then the value of integral int_0^(pi/2)(sinx)/(1+sinx+cosx)dx is equal to (a) 1/2log2 (b) i spi/2-log2 pi/4-1/2log2 (d) pi/2+log2

The integral int_(0)^(pi) x f(sinx )dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. I=int(0)^(2pi)(1)/(1+e^(sinx))dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |