Home
Class 12
MATHS
If f(x)=f(a+b-x), then int(a)^(b) xf(x)d...

If f(x)=f(a+b-x), then `int_(a)^(b) xf(x)dx` is equal to

A

`(a+b)overset(b)underset(a)int f(x)dx`

B

`(1)/(2)(a+b)overset(b)underset(a)intf(x)dx`

C

`(b-a)overset(b)underset(a)int f(x)dx`

D

`(1)/(2)(b-a)overset(b-a)overset(b)underset(a)int f(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_a^b x f(x) \, dx \) given the property \( f(x) = f(a + b - x) \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_a^b x f(x) \, dx \). 2. **Use the Property of the Function**: Since \( f(x) = f(a + b - x) \), we can substitute \( x \) with \( a + b - x \) in the integral. Thus, we can write: \[ I = \int_a^b (a + b - x) f(a + b - x) \, dx \] 3. **Change of Variables**: Now, we perform a change of variable. Let \( u = a + b - x \). Then, \( du = -dx \). When \( x = a \), \( u = b \) and when \( x = b \), \( u = a \). Therefore, we can rewrite the integral as: \[ I = \int_b^a (a + b - u) f(u) (-du) = \int_a^b (a + b - u) f(u) \, du \] 4. **Rewrite the Integral**: Thus, we have: \[ I = \int_a^b (a + b - x) f(x) \, dx \] 5. **Combine the Integrals**: Now we have two expressions for \( I \): \[ I = \int_a^b x f(x) \, dx \] \[ I = \int_a^b (a + b - x) f(x) \, dx \] Adding these two equations gives: \[ 2I = \int_a^b \left( x f(x) + (a + b - x) f(x) \right) dx \] 6. **Simplify the Expression**: This simplifies to: \[ 2I = \int_a^b (a + b) f(x) \, dx \] 7. **Solve for \( I \)**: Dividing both sides by 2, we obtain: \[ I = \frac{1}{2} (a + b) \int_a^b f(x) \, dx \] ### Final Result: Thus, the value of the integral \( \int_a^b x f(x) \, dx \) is: \[ \int_a^b x f(x) \, dx = \frac{1}{2} (a + b) \int_a^b f(x) \, dx \]

To solve the problem, we need to evaluate the integral \( I = \int_a^b x f(x) \, dx \) given the property \( f(x) = f(a + b - x) \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_a^b x f(x) \, dx \). 2. **Use the Property of the Function**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(a+c)^(b+c) f(x) dx is equal to

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If f(x)=f(a+b-x), then int(a)^(b) xf(x)dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |