Home
Class 12
MATHS
I=int(pi//5)^(3pi//10) (sinx)/(sinx+cosx...

`I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx`is equal to

A

`(pi)`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin x}{\sin x + \cos x} \, dx, \] we will use a property of definite integrals. This property states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Identify \( a \) and \( b \) Here, we have \( a = \frac{\pi}{5} \) and \( b = \frac{3\pi}{10} \). First, we need to calculate \( a + b \): \[ a + b = \frac{\pi}{5} + \frac{3\pi}{10} = \frac{2\pi}{10} + \frac{3\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}. \] ### Step 2: Apply the property Now, we can apply the property: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin x}{\sin x + \cos x} \, dx = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 3: Simplify the integrand Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\cos x}{\cos x + \sin x} \, dx. \] ### Step 4: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin x}{\sin x + \cos x} \, dx \) 2. \( I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\cos x}{\cos x + \sin x} \, dx \) Adding these two equations: \[ 2I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \left( \frac{\sin x + \cos x}{\sin x + \cos x} \right) \, dx = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} 1 \, dx. \] ### Step 5: Calculate the integral of 1 The integral of 1 over the interval from \( \frac{\pi}{5} \) to \( \frac{3\pi}{10} \) is simply the length of the interval: \[ 2I = \left[ x \right]_{\frac{\pi}{5}}^{\frac{3\pi}{10}} = \frac{3\pi}{10} - \frac{\pi}{5} = \frac{3\pi}{10} - \frac{2\pi}{10} = \frac{\pi}{10}. \] ### Step 6: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = \frac{\pi}{10} \implies I = \frac{\pi}{20}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{\pi}{20}}. \]

To solve the integral \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin x}{\sin x + \cos x} \, dx, \] we will use a property of definite integrals. This property states that: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

The value of int_(0)^(pi//2)(asinx+bcosx)/(sinx+cosx)dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

int_(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

int(In(tanx))/(sinx cosx)dx " is equal to "

int(1)/(cosx-sinx)dx is equal to

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int(dx)/(cosx+sinx) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. I=int(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dxis equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |