Home
Class 12
MATHS
The value of the integral int(0)^(400p...

The value of the integral
`int_(0)^(400pi) sqrt(1-cos2x)dx`, is

A

`200sqrt(2)`

B

`400sqrt(2)`

C

`800sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{400\pi} \sqrt{1 - \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand Using the trigonometric identity, we know that: \[ \cos 2x = 1 - 2\sin^2 x \] Thus, we can rewrite \( 1 - \cos 2x \): \[ 1 - \cos 2x = 2\sin^2 x \] So, we can express the integral as: \[ I = \int_{0}^{400\pi} \sqrt{2\sin^2 x} \, dx \] ### Step 2: Factor out constants The square root can be simplified: \[ \sqrt{2\sin^2 x} = \sqrt{2} \cdot |\sin x| \] Therefore, the integral becomes: \[ I = \sqrt{2} \int_{0}^{400\pi} |\sin x| \, dx \] ### Step 3: Analyze the periodicity of the function The function \( |\sin x| \) has a period of \( \pi \). Thus, we can break the integral from \( 0 \) to \( 400\pi \) into intervals of \( \pi \): \[ I = \sqrt{2} \cdot \left( \int_{0}^{\pi} |\sin x| \, dx \right) \cdot \text{number of periods} \] The number of periods in \( [0, 400\pi] \) is: \[ \frac{400\pi}{\pi} = 400 \] So we have: \[ I = 400 \sqrt{2} \int_{0}^{\pi} |\sin x| \, dx \] ### Step 4: Calculate the integral over one period Since \( \sin x \) is non-negative in the interval \( [0, \pi] \), we have: \[ |\sin x| = \sin x \quad \text{for } x \in [0, \pi] \] Thus: \[ \int_{0}^{\pi} |\sin x| \, dx = \int_{0}^{\pi} \sin x \, dx \] The integral of \( \sin x \) is: \[ -\cos x \bigg|_{0}^{\pi} = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 1 + 1 = 2 \] ### Step 5: Substitute back into the equation Now substituting back into our expression for \( I \): \[ I = 400 \sqrt{2} \cdot 2 = 800 \sqrt{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{800\sqrt{2}} \]

To solve the integral \( I = \int_{0}^{400\pi} \sqrt{1 - \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand Using the trigonometric identity, we know that: \[ \cos 2x = 1 - 2\sin^2 x \] Thus, we can rewrite \( 1 - \cos 2x \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

int_(0)^(pi//6) sqrt(1-sin 2x) dx

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the integral int_(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1) , is

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(400pi) sqrt(1-cos2x)dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |