Home
Class 12
MATHS
The value of int(0)^(32pi//3) sqrt(1+cos...

The value of `int_(0)^(32pi//3) sqrt(1+cos2x)dx` is

A

`(44+sqrt(3))/(sqrt(2))`

B

`(44-sqrt(3))/(sqrt(2))`

C

`(22-sqrt(3))/(sqrt(2))`

D

`(22+sqrt(3))/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand Using the trigonometric identity \( 1 + \cos 2x = 2 \cos^2 x \), we can rewrite the integral: \[ I = \int_0^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx = \int_0^{\frac{32\pi}{3}} \sqrt{2 \cos^2 x} \, dx = \int_0^{\frac{32\pi}{3}} \sqrt{2} |\cos x| \, dx \] ### Step 2: Factor out the constant Since \( \sqrt{2} \) is a constant, we can factor it out of the integral: \[ I = \sqrt{2} \int_0^{\frac{32\pi}{3}} |\cos x| \, dx \] ### Step 3: Determine the period of \( |\cos x| \) The function \( |\cos x| \) has a period of \( 2\pi \). We need to find how many full periods fit into \( \frac{32\pi}{3} \): \[ \frac{32\pi/3}{2\pi} = \frac{32}{6} = \frac{16}{3} \text{ periods} \] This means there are 5 full periods of \( 2\pi \) and a remaining interval of \( \frac{2\pi}{3} \). ### Step 4: Break the integral into parts We can break the integral into two parts: \[ I = \sqrt{2} \left( \int_0^{10\pi} |\cos x| \, dx + \int_{10\pi}^{\frac{32\pi}{3}} |\cos x| \, dx \right) \] ### Step 5: Calculate the integral over one period The integral of \( |\cos x| \) over one period \( [0, 2\pi] \) is: \[ \int_0^{2\pi} |\cos x| \, dx = 2 \int_0^{\pi} \cos x \, dx = 2 \left[ \sin x \right]_0^{\pi} = 2(0 - 0) = 2 \] ### Step 6: Calculate the integral over the full periods Since there are 5 full periods in \( [0, 10\pi] \): \[ \int_0^{10\pi} |\cos x| \, dx = 5 \cdot 2 = 10 \] ### Step 7: Calculate the integral over the remaining interval Now, we need to calculate \( \int_{10\pi}^{\frac{32\pi}{3}} |\cos x| \, dx \): - The interval \( [10\pi, \frac{32\pi}{3}] \) is \( [10\pi, 10\pi + \frac{2\pi}{3}] \). - In this interval, \( \cos x \) is negative from \( 10\pi \) to \( 11\pi/2 \) and positive from \( 11\pi/2 \) to \( \frac{32\pi}{3} \). Calculating: 1. From \( 10\pi \) to \( 11\pi/2 \): \[ \int_{10\pi}^{11\pi/2} -\cos x \, dx = -\left[ \sin x \right]_{10\pi}^{11\pi/2} = -\left( \sin(11\pi/2) - \sin(10\pi) \right) = -\left( 1 - 0 \right) = -1 \] 2. From \( 11\pi/2 \) to \( \frac{32\pi}{3} \): \[ \int_{11\pi/2}^{\frac{32\pi}{3}} \cos x \, dx = \left[ \sin x \right]_{11\pi/2}^{\frac{32\pi}{3}} = \sin\left(\frac{32\pi}{3}\right) - \sin\left(\frac{11\pi}{2}\right) = \left(-\frac{\sqrt{3}}{2}\right) - 1 = -\frac{\sqrt{3}}{2} - 1 \] ### Step 8: Combine the results Thus, the total integral becomes: \[ I = \sqrt{2} \left( 10 + (-1) + \left(-\frac{\sqrt{3}}{2} - 1\right) \right) = \sqrt{2} \left( 8 - \frac{\sqrt{3}}{2} \right) \] ### Final Result The final value of the integral is: \[ I = \sqrt{2} \left( 8 - \frac{\sqrt{3}}{2} \right) \]

To solve the integral \( I = \int_0^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand Using the trigonometric identity \( 1 + \cos 2x = 2 \cos^2 x \), we can rewrite the integral: \[ I = \int_0^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx = \int_0^{\frac{32\pi}{3}} \sqrt{2 \cos^2 x} \, dx = \int_0^{\frac{32\pi}{3}} \sqrt{2} |\cos x| \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

int_(0)^(pi//2) (1)/(4+3 cos x)dx

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(32pi//3) sqrt(1+cos2x)dx is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |