Home
Class 12
MATHS
(d)/(dx)(int(x^(2))^((x^(3)) (1)/(logt)d...

`(d)/(dx)(int_(x^(2))^((x^(3)) (1)/(logt)dt)` is equal to

A

`x^(2)-x`

B

`(x^(2)-x)logx`

C

`(x^(2)-x)/(logx)`

D

`(x-1^(2))/(logx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\int_{x^2}^{x^3} \frac{1}{\log t} dt\right)\), we will use the Leibniz rule for differentiation under the integral sign. ### Step-by-Step Solution: 1. **Identify the Integral and Its Limits**: The integral we are dealing with is: \[ F(x) = \int_{x^2}^{x^3} \frac{1}{\log t} dt \] 2. **Apply Leibniz Rule**: According to Leibniz's rule, if \( F(x) = \int_{g(x)}^{h(x)} f(t) dt \), then: \[ \frac{d}{dx} F(x) = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x) \] Here, \( f(t) = \frac{1}{\log t} \), \( g(x) = x^2 \), and \( h(x) = x^3 \). 3. **Calculate the Derivatives of the Limits**: We need to find \( h'(x) \) and \( g'(x) \): \[ h'(x) = \frac{d}{dx}(x^3) = 3x^2 \] \[ g'(x) = \frac{d}{dx}(x^2) = 2x \] 4. **Evaluate the Function at the Limits**: Now, we need to evaluate \( f(h(x)) \) and \( f(g(x)) \): \[ f(h(x)) = f(x^3) = \frac{1}{\log(x^3)} = \frac{1}{3 \log x} \quad \text{(using the property of logarithms)} \] \[ f(g(x)) = f(x^2) = \frac{1}{\log(x^2)} = \frac{1}{2 \log x} \quad \text{(using the property of logarithms)} \] 5. **Substitute into the Leibniz Rule**: Now substitute everything into the Leibniz rule: \[ \frac{d}{dx} F(x) = \frac{1}{3 \log x} \cdot 3x^2 - \frac{1}{2 \log x} \cdot 2x \] 6. **Simplify the Expression**: Simplifying the expression gives: \[ \frac{d}{dx} F(x) = \frac{3x^2}{3 \log x} - \frac{2x}{2 \log x} = \frac{x^2}{\log x} - \frac{x}{\log x} \] \[ = \frac{x^2 - x}{\log x} \] 7. **Final Result**: Thus, the final result is: \[ \frac{d}{dx}\left(\int_{x^2}^{x^3} \frac{1}{\log t} dt\right) = \frac{x^2 - x}{\log x} \]

To solve the problem \(\frac{d}{dx}\left(\int_{x^2}^{x^3} \frac{1}{\log t} dt\right)\), we will use the Leibniz rule for differentiation under the integral sign. ### Step-by-Step Solution: 1. **Identify the Integral and Its Limits**: The integral we are dealing with is: \[ F(x) = \int_{x^2}^{x^3} \frac{1}{\log t} dt ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt) is equal to

Let f(t)="ln"(t) . Then, (d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")

(d)/(dx)int_(x^(2))^(x)sqrt(cost)dt (at x=0 ) equals to ________.

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) int_(x^(2))^(x^(3))cost^(2)dt has the derivative

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

The value of lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr is :

The value of lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr is :

If y=int_(x^(2))^(x^(3))1/(logt)dt(xgt0) , then find (dy)/(dx)

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. (d)/(dx)(int(x^(2))^((x^(3)) (1)/(logt)dt) is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |