Home
Class 12
MATHS
If phi (x)=int(1//x)^(sqrt(x)) sin(t^(2)...

If `phi` (x)`=int_(1//x)^(sqrt(x)) sin(t^(2))dt` then `phi`' (1)is equal to

A

sin 1

B

2 sin 1

C

`(3//2)sin 1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\phi'(1)\) where \(\phi(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \sin(t^2) \, dt\), we will use the Leibniz rule for differentiation under the integral sign. Let's go through the steps in detail. ### Step 1: Write down the function We start with the function: \[ \phi(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \sin(t^2) \, dt \] ### Step 2: Apply the Leibniz rule According to the Leibniz rule, if \(\phi(x) = \int_{a(x)}^{b(x)} f(t) \, dt\), then: \[ \phi'(x) = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x) \] In our case: - \(a(x) = \frac{1}{x}\) - \(b(x) = \sqrt{x}\) - \(f(t) = \sin(t^2)\) ### Step 3: Differentiate the limits Now we need to find the derivatives of the limits: - \(b'(x) = \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}\) - \(a'(x) = \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}\) ### Step 4: Substitute into the Leibniz rule Now substituting into the Leibniz rule: \[ \phi'(x) = \sin((\sqrt{x})^2) \cdot \frac{1}{2\sqrt{x}} - \sin\left(\left(\frac{1}{x}\right)^2\right) \cdot \left(-\frac{1}{x^2}\right) \] This simplifies to: \[ \phi'(x) = \sin(x) \cdot \frac{1}{2\sqrt{x}} + \sin\left(\frac{1}{x^2}\right) \cdot \frac{1}{x^2} \] ### Step 5: Evaluate at \(x = 1\) Now we need to evaluate \(\phi'(1)\): \[ \phi'(1) = \sin(1) \cdot \frac{1}{2\sqrt{1}} + \sin(1) \cdot \frac{1}{1^2} \] This simplifies to: \[ \phi'(1) = \sin(1) \cdot \frac{1}{2} + \sin(1) \cdot 1 = \frac{1}{2} \sin(1) + \sin(1) = \frac{3}{2} \sin(1) \] ### Final Answer Thus, the value of \(\phi'(1)\) is: \[ \phi'(1) = \frac{3}{2} \sin(1) \]

To find \(\phi'(1)\) where \(\phi(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \sin(t^2) \, dt\), we will use the Leibniz rule for differentiation under the integral sign. Let's go through the steps in detail. ### Step 1: Write down the function We start with the function: \[ \phi(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \sin(t^2) \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If varphi(x)=int_(1/x)^(sqrt(x))sin(t^2)dt then varphi^(prime)(1)= a. sin1 b. 2sin1 c. 3/2sin1 d. 3sin1 .

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

int(1)/(sqrt(x^(2)+a^(2)))dt

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

The slope of the tangent of the curve y=int_(x)^(x^(2))(cos^(-1)t^(2))dt at x=(1)/(sqrt2) is equal to

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

lim_(x rarr infty) (x^(3) int_(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) dt) is equal to

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If phi (x)=int(1//x)^(sqrt(x)) sin(t^(2))dt then phi' (1)is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |