Home
Class 12
MATHS
Let f:(0,oo) in R be given f(x)=overse...

Let `f:(0,oo) in R` be given
`f(x)=overset(x)underset(1//x)int e^(t+(1)/(t))(1)/(t)dt`, then

A

f(x) is monotonically increasing on `[1,oo]`

B

f(x) is monotonically increasing on (0,1)

C

f(x) is monotonocally decreasing on (0,1)

D

`f(2^(x))`is an odd function of x on R

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

We have,
`f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt`
`rArr f'(x)=(1)/(x)e^-(x+(1)/(x))+(x)/(x^(2))e^-(x-(1)/(x))`
`rArr f'(x)=(2)/(x)e-(x+(1)/(x)) gt 0` for all `x in [1,oo)`
`:.f(x)` is monotonically increasing on `[1,oo)`.
So, option (a) is correct
Again, `f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(dt)/(t)`
`rArr f((1)/(x))=overset(1//x)underset(x)int e^-(t+(1)/(t))(dt)/(t)`
`rArr f((1)/(x))=overset(u)underset(1//u)int ue^(-(u+(1)/(u)))((-1)/(u^(2)))du` where `t=(1)/(u)`
`rArr f((1)/(x))=-overset(u)underset(1//u)int e^-(u+(1)/(2))(1)/(u)du=-overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt=-f(x)`
`:.f(x)+f((1)/(x))=0`. So, option (c ) is correct.
Finally, `f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt`
`rArr g(x)f(2^(x))=overset(2^(x))underset(2^(-x))int e^-(t+(1)/(t))(1)/(t)dt`
`rArr g(-x)=overset(2^-(x))underset(2^(x))int e^-(t+(1)/(t))(1)/(t)dt=-overset(2^(x))underset(2^-(x))int e^-(u+(1)/(2))(1)/(u)du=-g(x)`
`g(x)=f(2^(x))` is an odd function of x on R.
So,option(d) is correct.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

If F(x) =(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(4) equals

Let f:(0,oo)vecR be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then (a) f(x) is monotonically increasing on [1,oo) (b) f(x) is monotonically decreasing on (0,1) (c) f(2^x) is an odd function of x on R (d) none of these.

The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2) (1-t^(2))dt are

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

If y = underset(u(x))overset(v(x))intf(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = underset(1)overset(x)inte^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let g(t) = underset(x_(1))overset(x_(2))intf(t,x) dx . Then g'(t) = underset(x_(1))overset(x_(2))int(del)/(delt) (f(t,x))dx , Consider f(x) = underset(0)overset(pi)int (ln(1+xcostheta))/(costheta) d theta . The number of critical point of f(x) , in the interior of its domain, is

The set of critical pionts of the fuction f(x) given by f(x)= x - log _(e)x+underset(2)overset(x)((1)/(t)-2-2cos 4t)dt is

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |